We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Improved Detection of Polyomavirus in Merkel Cell Carcinoma

By LabMedica International staff writers
Posted on 20 Nov 2012
Print article
An improved detection system suggests that all Merkel cell carcinomas (MCC), a rare skin cancer, harbor Merkel polyomavirus.

The sensitivity of detection of Merkel polyomavirus (MCPyV) in MCC has been improved, enabling high-confidence discrimination between virus-positive and virus-negative tumors.

A team of scientists collaborating with those at the Dana Farber Institute (Boston, MA, USA) analyzed 75 archival formalin-fixed, paraffin-embedded (FFPE) tissue samples of MCC tumor specimens obtained from 60 patients. They performed immunohistochemistry staining with a newly developed mouse monoclonal antibody specific for MCPyV large T antigen. They also developed several quantitative polymerase chain reaction (qPCR) primers and probe sets to determine the viral copy number per tumor cell. Furthermore, they performed mass spectrometry based genotyping of 112 oncogenes and tumor suppressor genes from DNA extracted from these same tumor samples.

The newly developed monoclonal antibody Ab3 showed markedly increased sensitivity in detecting MCPyV large T antigen in 56 of 58 (97%) MCC tumors tested compared with another monoclonal antibody, known as CM2B4, which detected only 80%. Additionally mutations in the gene tumor protein (TP53) were identified in the two tumors that lacked detectable MCPyV. From 75 tumor specimens, only four tumor specimens contained a validated point mutation in any of the 112 oncogenes and tumor suppressor genes evaluated.

The authors concluded that that the presence of MCPyV in MCC is more common than previously reported and that improved detection methods may reveal that all MCC specimens contain viral DNA. The results of this study support the model that the MCPyV T antigens contribute to the pathogenesis of MCC and when their expression is absent, somatic mutations in TP53 and potentially other genes may be selected during oncogenesis. The study was published on November 1, 2012, in the Journal of Clinical Investigation.

Related Links:

Dana Farber Institute



Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
TORCH Infections Test
TORCH Panel

Print article

Channels

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Sekisui Diagnostics UK Ltd.