Mechanism Discovered for Cancer Cell Metastasis
By LabMedica International staff writers Posted on 18 Jul 2012 |

Image: Electron microscopy of a tumor cell (blue, green) on the way to extravasate through an alveolar endothelium blood capillary (purple, red). Tumor cell protrusions are seen forming their way through the endothelial cell (Photo courtesy of the University of Zurich.)

Image: Tumor cells (green) adhere on the endothelium (red) that becomes activated and permeable via CCL2-CCR2 signaling. Tumor cell extravasation is facilitated by recruited monocytic cells (blue). Technique: Adaptation of confocal image stacks creating an artificial surface. (Photo courtesy of the University of Zurich.)
Scientists have for the first time discovered a mechanism by which cancer cells metastasize to other parts of the body, where they form the secondary tumors responsible for the vast majority of cancer-related deaths.
Until now, molecular level processes leading to the metastatic spread into certain organs have been unknown, it being unclear as to how the secondary cells are able to leave the bloodstream and enter the tissue of other organs. A European team of physiologists and neuropathologists, primarily through the University of Zurich (Switzerland), have now identified a biochemical pathway underlying the origin of metastasis formation whereby at least some, if not all, types of cancer cells metastasize out of the bloodstream. The team, led by principal investigators Dr. Lubor Borsig and Dr. Mathias Heikenwalder, demonstrated that intestinal cancer cells manipulate specific “doorman receptors” on the endothelium of the blood vessels.
Elevated levels of the chemokine CCL2 are known to be characteristic of metastasizing breast, prostate, and intestinal bowel types of cancer cells; clinically, high CCL2 values have been primarily taken as an indication of strong tumor growth and a poor prognosis. Increased CCL2 expression has also been correlated with recruitment of CCR2+Ly6Chi monocytes, CCR2 being a CCL2-activated receptor. Based on in vivo and in vitro experiments, the current study has now shown CCL2 to be far more than an indicator of the cancer’s aggressiveness – CCL2 was found to be part of a signal transduction mechanism critical in helping at least some types of cancer cells metastasize.
The study describes CCL2 upregulation in metastatic UICC stage IV colon carcinomas and demonstrates that tumor cell-derived CCL2 activates the CCR2+ endothelium and thereby leads to increased vascular permeability in vivo. CCR2 acts as a “doorman receptor” activated by CCL2. The role of the CCR2 doorman in a healthy organism is not known and has only now been detected on the endothelium for the first time. Dr. Borsig suspects that the doorman is involved in modulating the permeability of the blood vessels during the body’s immune response.
“The mechanism discovered will yield a completely new approach for the development of drugs to combat metastasis in breast, prostate, and bowel cancer,” Dr. Borsig is convinced. Suppressing the tumor’s chemokine expression or blocking the doorman specifically for the tumor chemokine to inhibit cancer cells from entering healthy tissue from the bloodstream is conceivable. “If we can succeed in preventing the cancer cells from leaving the bloodstream, the metastasis can be fought directly at the source,” concludes Dr. Borsig.
Related Links:
University of Zurich
Until now, molecular level processes leading to the metastatic spread into certain organs have been unknown, it being unclear as to how the secondary cells are able to leave the bloodstream and enter the tissue of other organs. A European team of physiologists and neuropathologists, primarily through the University of Zurich (Switzerland), have now identified a biochemical pathway underlying the origin of metastasis formation whereby at least some, if not all, types of cancer cells metastasize out of the bloodstream. The team, led by principal investigators Dr. Lubor Borsig and Dr. Mathias Heikenwalder, demonstrated that intestinal cancer cells manipulate specific “doorman receptors” on the endothelium of the blood vessels.
Elevated levels of the chemokine CCL2 are known to be characteristic of metastasizing breast, prostate, and intestinal bowel types of cancer cells; clinically, high CCL2 values have been primarily taken as an indication of strong tumor growth and a poor prognosis. Increased CCL2 expression has also been correlated with recruitment of CCR2+Ly6Chi monocytes, CCR2 being a CCL2-activated receptor. Based on in vivo and in vitro experiments, the current study has now shown CCL2 to be far more than an indicator of the cancer’s aggressiveness – CCL2 was found to be part of a signal transduction mechanism critical in helping at least some types of cancer cells metastasize.
The study describes CCL2 upregulation in metastatic UICC stage IV colon carcinomas and demonstrates that tumor cell-derived CCL2 activates the CCR2+ endothelium and thereby leads to increased vascular permeability in vivo. CCR2 acts as a “doorman receptor” activated by CCL2. The role of the CCR2 doorman in a healthy organism is not known and has only now been detected on the endothelium for the first time. Dr. Borsig suspects that the doorman is involved in modulating the permeability of the blood vessels during the body’s immune response.
“The mechanism discovered will yield a completely new approach for the development of drugs to combat metastasis in breast, prostate, and bowel cancer,” Dr. Borsig is convinced. Suppressing the tumor’s chemokine expression or blocking the doorman specifically for the tumor chemokine to inhibit cancer cells from entering healthy tissue from the bloodstream is conceivable. “If we can succeed in preventing the cancer cells from leaving the bloodstream, the metastasis can be fought directly at the source,” concludes Dr. Borsig.
Related Links:
University of Zurich
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Skin Swabs Could Detect Parkinson’s Years Before Symptoms Appear
Parkinson’s disease is notoriously difficult to diagnose in its early stages, as motor symptoms do not appear until later in the progression of the disease. The ability to detect the disease up to seven... Read more
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
Highly Accurate Biomarkers Could Detect Ovarian Cancer Before Clinical Diagnosis
Ovarian cancer is a deadly and challenging disease, primarily because early detection is difficult. Most women (70-75%) are diagnosed only after the cancer has already spread, which significantly reduces... Read more
New Gene Tool to Enable Earlier Detection and Treatment of Cardiometabolic Diseases
Cardiometabolic diseases, which affect the heart, blood vessels, and the body's ability to process food and generate energy, are difficult to diagnose early due to the complex genetic changes that contribute... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
New AI System Uncovers Hidden Cell Subtypes to Advance Cancer Immunotherapy
To produce effective targeted therapies for cancer, scientists need to isolate the genetic and phenotypic characteristics of cancer cells, both within and across different tumors. These differences significantly... Read more
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
Cardiovascular disease is the leading cause of death worldwide, and atherosclerosis plays a critical role in its development. This chronic condition, characterized by the hardening and narrowing of arteries... Read more
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Tool Accurately Determines Breast Cancer Prognosis
A new study has found that cells and tissues surrounding a breast cancer tumor may hold critical information about how patients will respond to treatment. The research, published in the journal Patterns,... Read more
Powerful New Tool Improves Tissue Cancer Analysis
Studying the mix of cell types in human tissue is crucial for understanding diseases like cancer, but it presents significant challenges in both accuracy and scalability. The tumor microenvironment, composed... Read moreTechnology
view channel
Electronic Biosensors Used to Detect Pathogens Can Rapidly Detect Cancer Cells
A major challenge in healthcare is the early and affordable detection of serious diseases such as cancer. Early diagnosis remains difficult due to the complexity of identifying specific genetic markers... Read more
Safer, Portable and Low-Cost Imaging Solution to Revolutionize Biomedical Diagnostics
In diagnosing diseases and monitoring treatment, accurate and quick detection of temperature within biological tissues can be crucial, especially in early disease detection. Conventional methods such as... Read more
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read moreIndustry
view channel
QuidelOrtho and BÜHLMANN Collaborate on Gastrointestinal Biomarker Tests
QuidelOrtho Corporation (San Diego, CA, USA) and BÜHLMANN Laboratories AG (Schönenbuch, Switzerland) have announced the availability of the BÜHLMANN fCAL turbo and fPELA turbo assays on QuidelOrtho's... Read more