Computer-Designed Proteins Programmed to Deactivate Flu Viruses
By LabMedica International staff writers Posted on 20 Jun 2012 |
Computer-designed proteins are now being constructed to fight the flu. Researchers are demonstrating that proteins found in nature, but that do not normally bind the flu, can be engineered to act as broad-spectrum antiviral agents against a range of flu virus strains, including H1N1 pandemic influenza.
“One of these engineered proteins has a flu-fighting potency that rivals that of several human monoclonal antibodies,” said Dr. David Baker, a professor of biochemistry at the University of Washington (Seattle, USA), in a report June 7, 2012, published in the journal Nature Biotechnology.
Dr. Baker’s research team is making major inroads in optimizing the function of computer-designed influenza inhibitors. These proteins are constructed via computer modeling to fit exquisitely into a specific nano-sized target on flu viruses. By binding the target areas similar to a key into a lock, they keep the virus from changing shape, a tactic that the virus uses to infect living cells. The research efforts, analogous to docking a space station but on a molecular level, are made possible by computers that can describe the panoramas of forces involved on the submicroscopic scale.
Dr. Baker is head of the new Institute for Protein Design Center at the University of Washington. Biochemists, engineers, computer scientists, and medical specialists at the center are engineering innovative proteins with new functions for specific purposes in medicine, environmental protection, and other areas. Proteins underlie all typical activities and structures of living cells, and also control disease actions of pathogens such as viruses. Abnormal protein formation and interactions are also implicated in many inherited and later-life chronic disorders.
Because influenza is a serious worldwide public health problem due to its genetic shifts and drifts that sporadically become more virulent, the flu is one of the key interests of the Institutes for Protein Design and its collaborators in the United States and worldwide. Researchers are trying to meet the vital need for better therapeutic agents to protect against this very adaptable and extremely infective virus. Vaccines for new strains of influenza take months to develop, evaluate, and manufacture, and are not helpful for those already sick. The long response time for vaccine creation and distribution is unsettling when a more lethal strain abruptly emerges and spreads rapidly. The speed of transmission is accelerated by the lack of widespread immunity in the general population to the latest form of the virus.
Flu trackers refer to strains by their H and N subtypes. H stands for hemagglutinins, which are the molecules on the flu virus that enable it to invade the cells of respiratory passages. The virus’s hemagglutinin molecules attach to the surface of cells lining the respiratory tract. When the cell tries to engulf the virus, it makes the error of pulling it into a more acidic location. The drop in pH changes the shape of the viral hemagglutinin, thereby allowing the virus to fuse to the cell and open an entry for the virus’ RNA to come in and start making fresh viruses. It is hypothesized that the Baker Lab protein inhibits this shape change by binding the hemagglutinin in a very specific orientation and thus keeps the virus from invading cells.
Dr. Baker and his team wanted to create antivirals that could react against a wide variety of H subtypes, as this versatility could lead to a comprehensive therapy for influenza. Specifically, viruses that have hemagglutinins of the H2 subtype are responsible for the deadly pandemic of 1957 and continued to circulate until 1968. People born after that date have not been exposed to H2 viruses. The recent avian flu has a new version of H1 hemagglutinin. Data suggest that Dr. Baker’s proteins bind to all types of the group I hemagglutinin, a group that includes not only H1 but also the pandemic H2 and avian H5 strains.
The methods developed for the influenza inhibitor protein design, according to Dr. Baker, could be “a powerful route to inhibitors or binders for any surface patch on any desired target of interest.” For example, if a new disease pathogen arises, scientists could figure out how it interacts with human cells or other hosts on a molecular level. Scientists could then employ protein interface design to create a diversity of small proteins that they predict would block the pathogen’s interaction surface.
Genes for large numbers of the most promising, computer-designed proteins could be tested using yeast cells. After additional molecular chemistry research to search for the best binding among those proteins, those could be reprogrammed in the laboratory to undergo mutations, and all the mutated forms could be stored in a “library” for an in-depth examination of their amino acids, molecular architecture, and energy bonds.
Sophisticated technologies would allow the scientists to rapidly browse through the library to find those tiny proteins that clung to the pathogen surface target with pinpoint accuracy. The finalists would be selected from this pool for excelling at blocking the pathogen from attaching to, entering, and infecting human or animal cells.
The utilization of deep sequencing, the same technology now used to sequence human genomes cheaply, was particularly central in creating detailed maps relating sequencing to function. These maps were used to reprogram the design to achieve a more exact interaction between the inhibitor protein and the virus molecule. It also enabled the scientists, they said, “to leapfrog over bottlenecks” to improve the activity of the binder. They were able to see how small contributions from many small alterations in the protein, too difficult to see individually, could together create a binder with better attachment strength.
“We anticipate that our approach combining computational design followed by comprehensive energy landscape mapping,” Dr. Baker said, “will be widely useful in generating high-affinity and high-specificity binders to a broad range of targets for use in therapeutics and diagnostics.”
Related Links:
University of Washington
“One of these engineered proteins has a flu-fighting potency that rivals that of several human monoclonal antibodies,” said Dr. David Baker, a professor of biochemistry at the University of Washington (Seattle, USA), in a report June 7, 2012, published in the journal Nature Biotechnology.
Dr. Baker’s research team is making major inroads in optimizing the function of computer-designed influenza inhibitors. These proteins are constructed via computer modeling to fit exquisitely into a specific nano-sized target on flu viruses. By binding the target areas similar to a key into a lock, they keep the virus from changing shape, a tactic that the virus uses to infect living cells. The research efforts, analogous to docking a space station but on a molecular level, are made possible by computers that can describe the panoramas of forces involved on the submicroscopic scale.
Dr. Baker is head of the new Institute for Protein Design Center at the University of Washington. Biochemists, engineers, computer scientists, and medical specialists at the center are engineering innovative proteins with new functions for specific purposes in medicine, environmental protection, and other areas. Proteins underlie all typical activities and structures of living cells, and also control disease actions of pathogens such as viruses. Abnormal protein formation and interactions are also implicated in many inherited and later-life chronic disorders.
Because influenza is a serious worldwide public health problem due to its genetic shifts and drifts that sporadically become more virulent, the flu is one of the key interests of the Institutes for Protein Design and its collaborators in the United States and worldwide. Researchers are trying to meet the vital need for better therapeutic agents to protect against this very adaptable and extremely infective virus. Vaccines for new strains of influenza take months to develop, evaluate, and manufacture, and are not helpful for those already sick. The long response time for vaccine creation and distribution is unsettling when a more lethal strain abruptly emerges and spreads rapidly. The speed of transmission is accelerated by the lack of widespread immunity in the general population to the latest form of the virus.
Flu trackers refer to strains by their H and N subtypes. H stands for hemagglutinins, which are the molecules on the flu virus that enable it to invade the cells of respiratory passages. The virus’s hemagglutinin molecules attach to the surface of cells lining the respiratory tract. When the cell tries to engulf the virus, it makes the error of pulling it into a more acidic location. The drop in pH changes the shape of the viral hemagglutinin, thereby allowing the virus to fuse to the cell and open an entry for the virus’ RNA to come in and start making fresh viruses. It is hypothesized that the Baker Lab protein inhibits this shape change by binding the hemagglutinin in a very specific orientation and thus keeps the virus from invading cells.
Dr. Baker and his team wanted to create antivirals that could react against a wide variety of H subtypes, as this versatility could lead to a comprehensive therapy for influenza. Specifically, viruses that have hemagglutinins of the H2 subtype are responsible for the deadly pandemic of 1957 and continued to circulate until 1968. People born after that date have not been exposed to H2 viruses. The recent avian flu has a new version of H1 hemagglutinin. Data suggest that Dr. Baker’s proteins bind to all types of the group I hemagglutinin, a group that includes not only H1 but also the pandemic H2 and avian H5 strains.
The methods developed for the influenza inhibitor protein design, according to Dr. Baker, could be “a powerful route to inhibitors or binders for any surface patch on any desired target of interest.” For example, if a new disease pathogen arises, scientists could figure out how it interacts with human cells or other hosts on a molecular level. Scientists could then employ protein interface design to create a diversity of small proteins that they predict would block the pathogen’s interaction surface.
Genes for large numbers of the most promising, computer-designed proteins could be tested using yeast cells. After additional molecular chemistry research to search for the best binding among those proteins, those could be reprogrammed in the laboratory to undergo mutations, and all the mutated forms could be stored in a “library” for an in-depth examination of their amino acids, molecular architecture, and energy bonds.
Sophisticated technologies would allow the scientists to rapidly browse through the library to find those tiny proteins that clung to the pathogen surface target with pinpoint accuracy. The finalists would be selected from this pool for excelling at blocking the pathogen from attaching to, entering, and infecting human or animal cells.
The utilization of deep sequencing, the same technology now used to sequence human genomes cheaply, was particularly central in creating detailed maps relating sequencing to function. These maps were used to reprogram the design to achieve a more exact interaction between the inhibitor protein and the virus molecule. It also enabled the scientists, they said, “to leapfrog over bottlenecks” to improve the activity of the binder. They were able to see how small contributions from many small alterations in the protein, too difficult to see individually, could together create a binder with better attachment strength.
“We anticipate that our approach combining computational design followed by comprehensive energy landscape mapping,” Dr. Baker said, “will be widely useful in generating high-affinity and high-specificity binders to a broad range of targets for use in therapeutics and diagnostics.”
Related Links:
University of Washington
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Gold Nanoparticles to Improve Accuracy of Ovarian Cancer Diagnosis
Ovarian cancer is considered one of the deadliest cancers, in part because it rarely shows clear symptoms in its early stages, and diagnosis is often complex. Current approaches make it difficult to accurately... Read more
Simultaneous Cell Isolation Technology Improves Cancer Diagnostic Accuracy
Accurate cancer diagnosis remains a challenge, as liquid biopsy techniques often fail to capture the complexity of tumor biology. Traditional systems for isolating circulating tumor cells (CTCs) vary in... Read moreMolecular Diagnostics
view channel
Brain Inflammation Biomarker Detects Alzheimer’s Years Before Symptoms Appear
Alzheimer’s disease affects millions globally, but patients are often diagnosed only after memory loss and other symptoms appear, when brain damage is already extensive. Detecting the disease much earlier... Read more
First-of-Its-Kind Blood Test Detects Over 50 Cancer Types
Many cancers lack routine screening, so patients are often diagnosed only after tumors grow and spread, when options are limited. A faster, less invasive approach that broadens early detection could shift... Read more
Routine Blood Draws Could Detect Epigenetic Biomarkers for Predicting Cardiovascular Disease Risk
Cardiovascular disease is a leading cause of death worldwide, yet predicting individual risk remains a persistent challenge. Traditional risk factors, while useful, do not fully capture biological changes... Read moreHematology
view channel
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients
Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more
Novel Multiplex Assay Supports Diagnosis of Autoimmune Vasculitis
Autoimmune vasculitis and related conditions are difficult to diagnose quickly and accurately, often requiring multiple tests to confirm the presence of specific autoantibodies. Traditional methods can... Read more
Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more
Simple Genetic Testing Could Predict Treatment Success in Multiple Sclerosis Patients
Multiple sclerosis (MS) patients starting therapy often face a choice between interferon beta and glatiramer acetate, two equally established and well-tolerated first-line treatments. Until now, the decision... Read moreMicrobiology
view channel
Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Sepsis arises from infection and immune dysregulation, with neutrophils playing a central role in its progression. However, current clinical tools are unable to both isolate these cells and assess their... Read more
New Diagnostic Method Confirms Sepsis Infections Earlier
Sepsis remains one of the most dangerous medical emergencies, often progressing rapidly and becoming fatal without timely intervention. Each hour of delayed treatment in septic shock reduces patient survival... Read more
New Markers Could Predict Risk of Severe Chlamydia Infection
Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more
Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
Vaginal health depends on maintaining a balanced microbiome, particularly certain Lactobacillus species. Disruption of this balance, known as dysbiosis, can increase risks of infection, pregnancy complications,... Read morePathology
view channel
Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma
Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more
Clinicopathologic Study Supports Exclusion of Cervical Serous Carcinoma from WHO Classification
High-grade serous carcinoma is a rare diagnosis in cervical biopsies and can be difficult to distinguish from other tumor types. Cervical serous carcinoma is no longer recognized as a primary cervical... Read moreTechnology
view channel
Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine
The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Rapid Diagnostic Technology Utilizes Breath Samples to Detect Lower Respiratory Tract Infections
Respiratory tract infections (LRTIs) are leading causes of illness and death worldwide, particularly among vulnerable populations such as the elderly, young children, and those with compromised immune systems.... Read moreIndustry
view channel
Werfen and VolitionRx Partner to Advance Diagnostic Testing for Antiphospholipid Syndrome
Antiphospholipid syndrome (APS) is a rare autoimmune disorder that causes the immune system to produce abnormal antibodies, making the blood “stickier” than normal. This condition increases the risk of... Read more