Computer-Designed Proteins Programmed to Deactivate Flu Viruses
By LabMedica International staff writers Posted on 20 Jun 2012 |
Computer-designed proteins are now being constructed to fight the flu. Researchers are demonstrating that proteins found in nature, but that do not normally bind the flu, can be engineered to act as broad-spectrum antiviral agents against a range of flu virus strains, including H1N1 pandemic influenza.
“One of these engineered proteins has a flu-fighting potency that rivals that of several human monoclonal antibodies,” said Dr. David Baker, a professor of biochemistry at the University of Washington (Seattle, USA), in a report June 7, 2012, published in the journal Nature Biotechnology.
Dr. Baker’s research team is making major inroads in optimizing the function of computer-designed influenza inhibitors. These proteins are constructed via computer modeling to fit exquisitely into a specific nano-sized target on flu viruses. By binding the target areas similar to a key into a lock, they keep the virus from changing shape, a tactic that the virus uses to infect living cells. The research efforts, analogous to docking a space station but on a molecular level, are made possible by computers that can describe the panoramas of forces involved on the submicroscopic scale.
Dr. Baker is head of the new Institute for Protein Design Center at the University of Washington. Biochemists, engineers, computer scientists, and medical specialists at the center are engineering innovative proteins with new functions for specific purposes in medicine, environmental protection, and other areas. Proteins underlie all typical activities and structures of living cells, and also control disease actions of pathogens such as viruses. Abnormal protein formation and interactions are also implicated in many inherited and later-life chronic disorders.
Because influenza is a serious worldwide public health problem due to its genetic shifts and drifts that sporadically become more virulent, the flu is one of the key interests of the Institutes for Protein Design and its collaborators in the United States and worldwide. Researchers are trying to meet the vital need for better therapeutic agents to protect against this very adaptable and extremely infective virus. Vaccines for new strains of influenza take months to develop, evaluate, and manufacture, and are not helpful for those already sick. The long response time for vaccine creation and distribution is unsettling when a more lethal strain abruptly emerges and spreads rapidly. The speed of transmission is accelerated by the lack of widespread immunity in the general population to the latest form of the virus.
Flu trackers refer to strains by their H and N subtypes. H stands for hemagglutinins, which are the molecules on the flu virus that enable it to invade the cells of respiratory passages. The virus’s hemagglutinin molecules attach to the surface of cells lining the respiratory tract. When the cell tries to engulf the virus, it makes the error of pulling it into a more acidic location. The drop in pH changes the shape of the viral hemagglutinin, thereby allowing the virus to fuse to the cell and open an entry for the virus’ RNA to come in and start making fresh viruses. It is hypothesized that the Baker Lab protein inhibits this shape change by binding the hemagglutinin in a very specific orientation and thus keeps the virus from invading cells.
Dr. Baker and his team wanted to create antivirals that could react against a wide variety of H subtypes, as this versatility could lead to a comprehensive therapy for influenza. Specifically, viruses that have hemagglutinins of the H2 subtype are responsible for the deadly pandemic of 1957 and continued to circulate until 1968. People born after that date have not been exposed to H2 viruses. The recent avian flu has a new version of H1 hemagglutinin. Data suggest that Dr. Baker’s proteins bind to all types of the group I hemagglutinin, a group that includes not only H1 but also the pandemic H2 and avian H5 strains.
The methods developed for the influenza inhibitor protein design, according to Dr. Baker, could be “a powerful route to inhibitors or binders for any surface patch on any desired target of interest.” For example, if a new disease pathogen arises, scientists could figure out how it interacts with human cells or other hosts on a molecular level. Scientists could then employ protein interface design to create a diversity of small proteins that they predict would block the pathogen’s interaction surface.
Genes for large numbers of the most promising, computer-designed proteins could be tested using yeast cells. After additional molecular chemistry research to search for the best binding among those proteins, those could be reprogrammed in the laboratory to undergo mutations, and all the mutated forms could be stored in a “library” for an in-depth examination of their amino acids, molecular architecture, and energy bonds.
Sophisticated technologies would allow the scientists to rapidly browse through the library to find those tiny proteins that clung to the pathogen surface target with pinpoint accuracy. The finalists would be selected from this pool for excelling at blocking the pathogen from attaching to, entering, and infecting human or animal cells.
The utilization of deep sequencing, the same technology now used to sequence human genomes cheaply, was particularly central in creating detailed maps relating sequencing to function. These maps were used to reprogram the design to achieve a more exact interaction between the inhibitor protein and the virus molecule. It also enabled the scientists, they said, “to leapfrog over bottlenecks” to improve the activity of the binder. They were able to see how small contributions from many small alterations in the protein, too difficult to see individually, could together create a binder with better attachment strength.
“We anticipate that our approach combining computational design followed by comprehensive energy landscape mapping,” Dr. Baker said, “will be widely useful in generating high-affinity and high-specificity binders to a broad range of targets for use in therapeutics and diagnostics.”
Related Links:
University of Washington
“One of these engineered proteins has a flu-fighting potency that rivals that of several human monoclonal antibodies,” said Dr. David Baker, a professor of biochemistry at the University of Washington (Seattle, USA), in a report June 7, 2012, published in the journal Nature Biotechnology.
Dr. Baker’s research team is making major inroads in optimizing the function of computer-designed influenza inhibitors. These proteins are constructed via computer modeling to fit exquisitely into a specific nano-sized target on flu viruses. By binding the target areas similar to a key into a lock, they keep the virus from changing shape, a tactic that the virus uses to infect living cells. The research efforts, analogous to docking a space station but on a molecular level, are made possible by computers that can describe the panoramas of forces involved on the submicroscopic scale.
Dr. Baker is head of the new Institute for Protein Design Center at the University of Washington. Biochemists, engineers, computer scientists, and medical specialists at the center are engineering innovative proteins with new functions for specific purposes in medicine, environmental protection, and other areas. Proteins underlie all typical activities and structures of living cells, and also control disease actions of pathogens such as viruses. Abnormal protein formation and interactions are also implicated in many inherited and later-life chronic disorders.
Because influenza is a serious worldwide public health problem due to its genetic shifts and drifts that sporadically become more virulent, the flu is one of the key interests of the Institutes for Protein Design and its collaborators in the United States and worldwide. Researchers are trying to meet the vital need for better therapeutic agents to protect against this very adaptable and extremely infective virus. Vaccines for new strains of influenza take months to develop, evaluate, and manufacture, and are not helpful for those already sick. The long response time for vaccine creation and distribution is unsettling when a more lethal strain abruptly emerges and spreads rapidly. The speed of transmission is accelerated by the lack of widespread immunity in the general population to the latest form of the virus.
Flu trackers refer to strains by their H and N subtypes. H stands for hemagglutinins, which are the molecules on the flu virus that enable it to invade the cells of respiratory passages. The virus’s hemagglutinin molecules attach to the surface of cells lining the respiratory tract. When the cell tries to engulf the virus, it makes the error of pulling it into a more acidic location. The drop in pH changes the shape of the viral hemagglutinin, thereby allowing the virus to fuse to the cell and open an entry for the virus’ RNA to come in and start making fresh viruses. It is hypothesized that the Baker Lab protein inhibits this shape change by binding the hemagglutinin in a very specific orientation and thus keeps the virus from invading cells.
Dr. Baker and his team wanted to create antivirals that could react against a wide variety of H subtypes, as this versatility could lead to a comprehensive therapy for influenza. Specifically, viruses that have hemagglutinins of the H2 subtype are responsible for the deadly pandemic of 1957 and continued to circulate until 1968. People born after that date have not been exposed to H2 viruses. The recent avian flu has a new version of H1 hemagglutinin. Data suggest that Dr. Baker’s proteins bind to all types of the group I hemagglutinin, a group that includes not only H1 but also the pandemic H2 and avian H5 strains.
The methods developed for the influenza inhibitor protein design, according to Dr. Baker, could be “a powerful route to inhibitors or binders for any surface patch on any desired target of interest.” For example, if a new disease pathogen arises, scientists could figure out how it interacts with human cells or other hosts on a molecular level. Scientists could then employ protein interface design to create a diversity of small proteins that they predict would block the pathogen’s interaction surface.
Genes for large numbers of the most promising, computer-designed proteins could be tested using yeast cells. After additional molecular chemistry research to search for the best binding among those proteins, those could be reprogrammed in the laboratory to undergo mutations, and all the mutated forms could be stored in a “library” for an in-depth examination of their amino acids, molecular architecture, and energy bonds.
Sophisticated technologies would allow the scientists to rapidly browse through the library to find those tiny proteins that clung to the pathogen surface target with pinpoint accuracy. The finalists would be selected from this pool for excelling at blocking the pathogen from attaching to, entering, and infecting human or animal cells.
The utilization of deep sequencing, the same technology now used to sequence human genomes cheaply, was particularly central in creating detailed maps relating sequencing to function. These maps were used to reprogram the design to achieve a more exact interaction between the inhibitor protein and the virus molecule. It also enabled the scientists, they said, “to leapfrog over bottlenecks” to improve the activity of the binder. They were able to see how small contributions from many small alterations in the protein, too difficult to see individually, could together create a binder with better attachment strength.
“We anticipate that our approach combining computational design followed by comprehensive energy landscape mapping,” Dr. Baker said, “will be widely useful in generating high-affinity and high-specificity binders to a broad range of targets for use in therapeutics and diagnostics.”
Related Links:
University of Washington
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more