We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Set Isolated in Transformation of Skin Cells into Embryonic Tissues

By LabMedica International staff writers
Posted on 13 May 2019
Print article
Image: A micrograph showing four-cell stage mouse embryos (Photo courtesy of Kirill Makedonski, the Hebrew University of Jerusalem).
Image: A micrograph showing four-cell stage mouse embryos (Photo courtesy of Kirill Makedonski, the Hebrew University of Jerusalem).
A team of developmental biologists identified a set of five genes that is capable of transforming skin cells into pluripotent stem cells and then into all three of the cell types that comprise the early embryo: the embryo itself, the placenta, and the extra-embryonic tissues, such as the umbilical cord.

Totipotency represents the type of cell with the greatest differentiation potential, being able to differentiate into any embryonic cell, as well as extraembryonic cells. In contrast, pluripotent cells can only differentiate into embryonic cells. Following fertilization, totipotent cells undergo asymmetric cell divisions, resulting in three distinct cell types in the late pre-implantation blastocyst: epiblast (Epi), primitive endoderm (PrE), and trophectoderm (TE).

In the current study, investigators at the Hebrew University of Jerusalem (Israel) sought to understand whether these three cell types could be induced from fibroblasts by one combination of transcription factors.

Starting with mouse skin cells, the investigators utilized a sophisticated fluorescent "knockin" reporter system to identify a combination of five transcription factors, Gata3, Eomes, Tfap2c, Myc, and Esrrb, that could reprogram fibroblasts into induced pluripotent stem cells (iPSCs), induced trophoblast stem cells (iTSCs), and induced extraembryonic endoderm stem cells (iXENs), concomitantly.

In-depth transcriptomic, chromatin, and epigenetic analyses provide insights into the molecular mechanisms that powered the reprogramming process toward the three cell types. Results published in the April 25, 2019, online edition of the journal Cell Stem Cell showed that the interplay between Esrrb and Eomes during the reprogramming process determined cell fate, where high levels of Esrrb induced a XEN-like state that drove pluripotency and high levels of Eomes drove trophectodermal fate.

Trophoblasts are cells forming the outer layer of a blastocyst, which provide nutrients to the embryo and develop into a large part of the placenta. They are formed during the first stage of pregnancy and are the first cells to differentiate from the fertilized egg. This layer of trophoblasts is also collectively referred to as "the trophoblast" or, after gastrulation, the trophectoderm, as it is then contiguous with the ectoderm of the embryo.

Related Links:
Hebrew University of Jerusalem

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: ColoSense is the first FDA-approved RNA-based molecular screening test for qualitative detection of colorectal cancer (Photo courtesy of Geneoscopy)

RNA-Powered Molecular Test to Help Combat Early-Age Onset Colorectal Cancer

Colorectal cancer (CRC) ranks as the second most lethal cancer in the United States. Nevertheless, many Americans eligible for screening do not undergo testing due to limited access or reluctance towards... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new method is quick and easy, and can also be used by non-medical personnel. (Photo courtesy of Zoratto et al. Advanced Science 2024, edited)

New Blood Test Device Modeled on Leeches to Help Diagnose Malaria

Many individuals have a fear of needles, making the experience of having blood drawn from their arm particularly distressing. An alternative method involves taking blood from the fingertip or earlobe,... Read more