We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Protein Combination Reduces Muscle Damage in ALS Model

By LabMedica International staff writers
Posted on 25 Jul 2018
Print article
Image: A model of human calpastatin (Photo courtesy of Sigma-Aldrich).
Image: A model of human calpastatin (Photo courtesy of Sigma-Aldrich).
Researchers have found that high levels of the enzyme mitofusion 2 (Mfn2) prevent nerve degeneration, muscle atrophy, and paralysis in a mouse model of the muscle wasting disease amyloid lateral sclerosis (ALS).

Mitofusin-2 is a mitochondrial membrane protein that participates in mitochondrial fusion and contributes to the maintenance and operation of the mitochondrial network. Mitochondria function as a dynamic network constantly undergoing fusion and fission. The balance between fusion and fission is important in maintaining the integrity of the mitochondria and facilitates the mixing of the membranes and the exchange of DNA between mitochondria.

In addition to its mitochondrial role, investigators at the Case Western Reserve University School of Medicine (Cleveland, OH, USA) reported in the July 12, 2018, online edition of the journal Cell Metabolism that Mfn2 acted as a dominant suppressor of neuromuscular synaptic loss, which preserved the health of skeletal muscles. By preserving neuromuscular synapses, increasing levels of neuronal Mfn2 prevented skeletal muscle wasting in both the ALS mouse model SOD1G93A and in aged normal mice, whereas deletion of neuronal Mfn2 produced neuromuscular synaptic dysfunction and skeletal muscle atrophy. Neuromuscular synaptic loss after sciatic nerve transection could also be alleviated by Mfn2.

Mfn2 was found to coexist with calpastatin, a protein involved in numerous membrane fusion events, such as neural vesicle exocytosis and platelet and red-cell aggregation. This association was found primarily in mitochondria-associated membranes (MAMs) where Mfn2 regulated the axonal transport of calpastatin. Furthermore, genetic inactivation of calpastatin abolished Mfn2-mediated protection of neuromuscular synapses.

Senior author Dr. Xinglong Wang, associate professor of pathology at Case Western Reserve University School of Medicine, said, “Upregulation of Mfn2 specifically in nerve cells is sufficient to abolish skeletal muscle loss in ALS and aged mice, despite ALS-causing protein being found in all organs and tissues. Mfn2 deficiency or mutations are commonly observed in patients with ALS, peripheral neuropathy, Alzheimer’s disease, and other neurodegenerative diseases in which synaptic loss has long been recognized as a prominent early feature. Supplementing Mfn2 may be a common and effective therapeutic approach to treat a wide range of diseases including but not limited to muscular disorders, patients with nerve injury, and various major neurodegenerative diseases associated with synaptic loss.”

Related Links:
Case Western Reserve University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more