We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Protein Supports Optimal Vascular System Performance

By LabMedica International staff writers
Posted on 01 May 2018
Print article
Image: An illustration of blood vessels including artery, arteriole, capillaries, vein and venule (Photo courtesy of the [U.S.] National Cancer Institute).
Image: An illustration of blood vessels including artery, arteriole, capillaries, vein and venule (Photo courtesy of the [U.S.] National Cancer Institute).
A protein has been identified that acts as a sensor of mechanical stimulation and is essential for sensing blood flow and supporting optimal performance of the vascular system.

The process of mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. However, the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown.

To determine which molecules are capable of sensing shear stress, investigators at the Scripps Research Institute (La Jolla, CA, USA) designed a 384-well screening system that applied shear stress to cultured cells. The system used turbulent movement of liquid to mimic fluid flow in blood vessels. The instrument employed 384 pistons to push the fluid up and down over a bed of cells, placed in 384 wells on a microtiter plate. This motion simulated how blood would put pressure on those cells.

The investigators tested a series of cell lines, some of which overexpressed proteins potentially linked to pressure sensing. The expression of different candidate genes in each of the 384 wells was "knocked down" with siRNA (short interfering RNA), and the modified cells were evaluated to determine if that specific gene was required for responding to shear stress.

Results published in the April 19, 2018, online edition of the journal Cell revealed that the protein GPR68 was necessary and sufficient for shear stress responses. This protein is a proton-sensing G protein-coupled receptor, a transmembrane receptor that senses acidic pH. This class of G protein-coupled receptors is activated when extracellular pH falls into the range of 6.4-6.8 (typical values are above 7.0). The functional role of the low pH sensitivity of the proton-sensing G protein-coupled receptors is being studied in several tissues where cells respond to conditions of low pH including bone and inflamed tissues.

Data obtained during the current study showed that GPR68 was expressed in endothelial cells of small-diameter arteries. Importantly, Gpr68-deficient mice displayed markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles.

“In a model organism, this protein is essential for sensing blood flow, and the proper functioning of the vascular system,” said senior author Dr. Ardem Patapoutian, a professor at the Scripps Research Institute. "It has been known for decades that blood vessels sense changes in blood flow rate, and this information is crucial in regulating blood vessel dilation and controlling vascular tone. Despite the importance of this process, the molecules involved within arteries to sense blood flow have remained unknown. Future work will explore the role of GPR68 in clinically relevant cardiovascular diseases. We are also exploring the possibility of using small molecules to modulate the function of GPR68, as such molecules could be beneficial in the clinic.”

Related Links:
Scripps Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more