LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Liver-on-Chip Culture System Used to Study Hep B Infection

By LabMedica International staff writers
Posted on 28 Feb 2018
Print article
Image: Primary hepatocytes grown in a three-dimensional microfluidic \"liver-on-a-chip\" platform following infection with hepatitis B virus (Photo courtesy of Dr. Marcus Dorner, Imperial College London).
Image: Primary hepatocytes grown in a three-dimensional microfluidic \"liver-on-a-chip\" platform following infection with hepatitis B virus (Photo courtesy of Dr. Marcus Dorner, Imperial College London).
The potential value of an artificial "liver-on-chip" for biomedical research was demonstrated in a study that used the device to explore the mechanisms of hepatitis B infection and propagation.

With more than 240 million people infected worldwide, hepatitis B virus (HBV) is a major international health concern. The inability to mimic the complexity of the liver using cell lines and regular primary human hepatocyte (PHH) cultures have posed significant limitations for studying host/pathogen interactions and for developing a cure for the infection.

To overcome these limitations investigators at Imperial College London (United Kingdom) infected an artificial liver organ-on-chip coupled with a culture system developed by the biotechnology company CN Bio Innovations (Welwyn Garden City, United Kingdom) with HBV.

This liver mimic system, which could be maintained for more than 40 days, enabled the recapitulation of all steps of the HBV life cycle, including the replication of patient-derived HBV and the maintenance of HBV cccDNA (covalently closed circular DNA).

The investigators reported in the February 14, 2018, online edition of the journal Nature Communications that innate immune and cytokine responses following infection with HBV mimicked those observed in HBV-infected patients, thus allowing pathways important for immune evasion to be traced and biomarkers to be validated.

The three-dimensional PHH cultures enabled infection studies to be carried out at 10,000-fold lower MOI units than other advanced culture models. MOI (multiplicity of infection) is the ratio of infectious agents (viruses in this case) to infection targets (the liver cells). Co-culture of PHH with other non-parenchymal cells enabled the identification of the cellular origin of immune effectors, thus providing a valuable preclinical platform for HBV research.

Senior author Dr. Marcus Dorner, non-clinical lecturer in immunology at Imperial College London, said, "This is the first time that organ-on-a-chip technology has been used to test viral infections. Our work represents the next frontier in the use of this technology. We hope it will ultimately drive down the cost and time associated with clinical trials, which will benefit patients in the long run. Once we begin testing viruses and bacteria on other artificial organs, the next steps could be to test drug interaction with the pathogens within the organ-on-chip environment."

Related Links:
Imperial College London
CN Bio Innovations
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more