We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Drug Candidate Disrupts Mitochondrial Function in Melanoma Cells

By LabMedica International staff writers
Posted on 15 Jan 2018
Print article
Image: A slide culture of a Streptomyces species (Photo courtesy of Wikimedia Commons).
Image: A slide culture of a Streptomyces species (Photo courtesy of Wikimedia Commons).
The potential anticancer drug mensacarcin was shown to interfere with mitochondrial function while inducing apoptosis in melanoma cells.

Mensacarcin is a secondary metabolite (an organic compound that is not directly involved in the normal growth, development, or reproduction of an organism; unlike primary metabolites, absence of secondary metabolites does not result in immediate death of the organism) produced by the soil bacterium Streptomyces bottropensis.

Mensacarcin is a highly oxygenated polyketide that exhibits potent cytostatic properties in almost all cell lines of the [U.S.] National Cancer Institute (NCI)-60 cell line screen and relatively selective cytotoxicity against melanoma cells. Moreover, its low COMPARE correlations with known standard antitumor agents indicate a unique mechanism of action.

Since effective therapies for managing melanoma are limited, investigators at Oregon State University (Corvallis, USA) sought to investigate mensacarcin's unique cytostatic and cytotoxic effects and its mode of action.

The investigators reported in the December 27, 2017, online edition of the Journal of Biological Chemistry that mensacarcin activated caspase-3/7–dependent apoptotic pathways and induced cell death in melanoma cells. Upon mensacarcin exposure, SK-Mel-28 and SK-Mel-5 melanoma cells, which had the BRAFV600E mutation associated with drug resistance, showed characteristic chromatin condensation as well as distinct poly(ADP-ribose)polymerase-1 cleavage. Flow cytometry identified a large population of apoptotic melanoma cells, and single-cell electrophoresis indicated that mensacarcin caused genetic instability, a hallmark of early apoptosis.

To visualize mensacarcin's subcellular localization, the investigators synthesized a fluorescent mensacarcin probe that retained activity. The natural product probe was localized to mitochondria within 20 minutes of treatment. Live-cell bioenergetic flux analysis confirmed that mensacarcin disturbed energy production and mitochondrial function rapidly. The subcellular localization of the fluorescently labeled mensacarcin together with its unusual metabolic effects in melanoma cells provided evidence that mensacarcin targeted mitochondria.

"Mensacarcin has potent anticancer activity, with selectivity against melanoma cells," said senior author Dr. Sandra Loesgen, assistant professor of chemistry at Oregon State University. "It shows powerful anti-proliferative effects in all tested cancer cell lines in the U.S. Cancer Institute's cell line panel, but inhibition of cell growth is accompanied by fast progression into cell death in only a small number of cell lines, such as melanoma cells. The probe was localized to mitochondria within 20 minutes of treatment. The localization together with mensacarcin's unusual metabolic effects in melanoma cells provide evidence that mensacarcin targets mitochondria. Mensacarcin's unique mode of action indicates it might represent a promising lead for the development of new anticancer drugs."

Related Links:
Oregon State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more