LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Increased Genome Variance Found in Mitochondria DNA Study

By LabMedica International staff writers
Posted on 19 Dec 2017
Print article
Image: Manual isolation of a single live mitochondrion. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate a single mitochondrion from the dendrite region of the mouse neuron (Photo courtesy of Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania).
Image: Manual isolation of a single live mitochondrion. The mitochondria can be seen under a microscope where a thin glass tube can be used to isolate a single mitochondrion from the dendrite region of the mouse neuron (Photo courtesy of Jacqueline Morris and Jaehee Lee, Perelman School of Medicine, University of Pennsylvania).
A team of molecular biologists has developed a method for identification of genetic variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for the extremely high-resolution study of mitochondrial mutation dynamics.

Mitochondria have been implicated in several human diseases, including mitochondrial disorders, cardiac dysfunction, heart failure, and autism. The number of mitochondria in a cell can vary widely by organism, tissue, and cell type. For instance, red blood cells have no mitochondria, whereas liver cells can have more than 2000. Each mitochondrion is composed of compartments, comprising the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix that carry out specialized functions.

Investigators at the University of Pennsylvania (Philadelphia, USA) reported in the December 5, 2017, issue of the journal Cell Reports that they used a method for isolation and analysis of the genomic DNA from a single mitochondrion, without loss of its spatial origin within a cell, to investigate the nature of mitochondrial genome variation in human and mouse brain cells. The study considered multiple scales - from different cells in a single individual to different subcellular locations within a single cell.

Results revealed extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that was present in multiple mitochondria across cells. Heteroplasmy is the presence of more than one type of organellar genome (mitochondrial DNA or plastid DNA) within a cell or individual. It is an important factor in considering the severity of mitochondrial diseases. Since most eukaryotic cells contain many hundreds of mitochondria with hundreds of copies of mitochondrial DNA, it is common for mutations to affect only some mitochondria, leaving most unaffected.

The data obtained during this study suggested that even in inbred strains of mice, there was a broad segregating mitochondrial variation, within and across individuals, resulting in a large variation in individual heteroplasmy load. Although the data were more limited, it was evident that human samples showed unusual levels of heteroplasmy arising from within single-mitochondrion polymorphism.

"By being able to look at a single mitochondrion and compare mutational dynamics between mitochondria, we will be able to gauge the risk for reaching a threshold for diseases associated with increasing numbers of mitochondrial mutations," said senior author Dr. James Eberwine, a professor of systems pharmacology and translational therapeutics at the University of Pennsylvania. "This roadmap of the location and number of mutations within the DNA of a mitochondrion and across all of a cell's mitochondria is where we need to start."

Related Links:
University of Pennsylvania

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more