LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Oligonucleotide Treatment Reduces Neurological Damage in Alzheimer's Model

By LabMedica International staff writers
Posted on 18 Dec 2017
Print article
Image: Clumps of toxic Alzheimer\'s A beta protein (white spots) are scarcer in the brains of mice treated with an antisense oligonucleotide that targets APOE4 (top) as compared with those given a placebo (bottom) (Photo courtesy of Tien-Phat Huynh, Washington University School of Medicine).
Image: Clumps of toxic Alzheimer\'s A beta protein (white spots) are scarcer in the brains of mice treated with an antisense oligonucleotide that targets APOE4 (top) as compared with those given a placebo (bottom) (Photo courtesy of Tien-Phat Huynh, Washington University School of Medicine).
Neurological damage in mice that had been genetically engineered to express human apolipoprotein E4 (APOE4) - a gene linked to increased risk of developing Alzheimer's disease - was significantly reduced by treatment with an antisense oligonucleotide.

The apolipoprotein E gene is the strongest genetic risk factor for late-onset Alzheimer's disease. Previous studies suggested that reduction of apoE protein levels through genetic manipulation could reduce the pathology of the disease's Abeta plaques. However, it was not demonstrated how reduction of apoE levels after birth would affect amyloid deposition.

To study the mechanism of apoE toxicity, investigators at Washington University School of Medicine (St. Louis, MO, USA) utilized an antisense oligonucleotide (ASO) to reduce apoE expression in the brains of APP/PS1-21 mice homozygous for the human APOE-epsilon4 or APOE-epsilon3 allele. The ASO or a suitable control material was injected into the brains of mice that were either newly born or of six weeks of age.

The investigators reported in the December 6, 2017, online edition of the journal Neuron that ASO treatment starting after birth led to a significant decrease in Abeta pathology when assessed at four months. In contrast, ASO treatment starting at six weeks - at the onset of amyloid deposition - led to an increase in Abeta plaque size and a reduction in plaque-associated neuron damage with no change in overall plaque load.

"Scientists have been interested in APOE for years but there are only a few examples where researchers have targeted it with a compound in living animals," said senior author Dr. David Holtzman, professor of neurology at Washington University School of Medicine. "Our findings indicate that APOE is not just involved in Alzheimer's risk and disease progression, but it could potentially be a real target for treatment or prevention."

"If you wanted to target APOE to affect the amyloid process, the best thing would be to start before the plaques form," said Dr. Holtzman. "But even if you start later, you still may reduce the amount of damage caused by the plaques. Now that we have shown that it is possible to target APOE, we can start figuring out the best way to do it."

Related Links:
Washington University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more