LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Transgenic Cas9 Mosquitoes Used to Target Disease Carriers

By LabMedica International staff writers
Posted on 29 Nov 2017
Print article
Image: CRISPR/Cas9-mediated disruption of genes associated with cuticle pigment caused mosquitoes to turn from black to yellow, and disruption of genes associated with eye pigment caused eye color to change from black to white (Photo courtesy of the University of California, Riverside).
Image: CRISPR/Cas9-mediated disruption of genes associated with cuticle pigment caused mosquitoes to turn from black to yellow, and disruption of genes associated with eye pigment caused eye color to change from black to white (Photo courtesy of the University of California, Riverside).
Insertion of the gene encoding the Cas9 enzyme into the germline of Aedes aegypti mosquitos represents a step toward the development of novel population control technologies targeting this carrier of serious viral pathogens including dengue, chikungunya, yellow fever, and Zika.

The development of CRISPR/Cas9 technologies has dramatically increased the accessibility and efficiency of genome editing in many organisms. In general, in vivo germline expression of Cas9 results in substantially higher activity than embryonic injection. However, no transgenic lines expressing Cas9 have been developed for the major mosquito disease vector Aedes aegypti.

CRISPR/Cas9 is regarded as the cutting edge of molecular biology technology. CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at the University of California, Riverside (USA) reported in the November 14, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that they used embedded Cas9 with CRSPR guide RNA's to disrupt numerous genes important for normal morphological development, which resulted in completely yellow, three-eyed, and wingless mosquitoes.

"These Cas9 strains can be used to develop split-gene drives which are a form of gene-drive by which the Cas9 and the guide RNA's are inserted at separate genomic loci and depend on each other for spread. This is the safest way to develop and test gene drives in the laboratory to ensure no spread into the wild," said senior author Dr. Omar Akbari, assistant professor of entomology at the University of California, Riverside.

Gene drive is the phenomenon in which the inheritance of a particular gene or set of genes is favorably biased. Engineered gene drives have been proposed to provide an effective means of genetically modifying populations or even whole species. The technique can be used for adding, disrupting, or modifying genes, such as to cause a crash in the populations of a disease vector by reducing their reproductive capacity.

"Next steps should be undertaken to identify the regulatory sequences that can be used to express the guide RNAs from the genome, and once these sequences are identified developing gene drives in the species should be a turnkey," said Dr. Akbari.

Related Links:
University of California, Riverside

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more