LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Staphylococcus Aureus Avoids Inducing Immune Memory in Model

By LabMedica International staff writers
Posted on 03 Oct 2017
Print article
Image: Four spherical S. aureus bacteria being enveloped and destroyed by human white blood cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
Image: Four spherical S. aureus bacteria being enveloped and destroyed by human white blood cells (Photo courtesy of the U.S. National Institute of Allergy and Infectious Diseases).
A team of medical microbiologists has identified the mechanism that prevents the body's immune system from developing an effective protective response to repeated Staphylococcus aureus infections.

Investigators at Cedars-Sinai Medical Center (Los Angeles, CA, USA) sought to clarify why humans do not usually develop effective immunity to Staphylococcus aureus reinfection.

Toward this end, the investigators worked with a mouse model that mimicked human S. aureus infection. They reported in the September 21, 2017, online edition of the journal Cell Host & Microbe that infection by S. aureus caused the immune system to increase production of anti-inflammatory cytokines, specifically interleukin-10 (IL-10), while impairing the anti-pathogenic response from protective Th17 (T helper) cells.

At the mechanistic level they found that O-acetylation of peptidoglycan, a mechanism utilized by S. aureus to block bacterial cell wall breakdown, limited the induction of pro-inflammatory signals required for optimal Th17 polarization. Thus, the bacterial cell wall remained intact after infecting the host, and molecules from the pathogen did not escape to interact with the immune system and trigger the development of robust protective immune memory.

IL-10 deficiency in mice restored protective immunity to S. aureus infection. Using a staphylococcal peptidoglycan O-acetyltransferase mutant as adjuvant reduced IL-10, increased IL-1beta (an important mediator of the inflammatory response), and promoted development of IL-17-dependent, Th cell-transferable protective immunity.

"Essentially, staph tricks the body's T-cells, which are white blood cells that fight infection, and prevents them from mounting an effective defense," said contributing author Dr. Gislaine Martins, assistant professor of biomedical science and medicine at Cedars-Sinai Medical Center. "The study explains why our immune system is fooled by staph. Staph evolved to have this enzyme that makes this modification in its cell wall. This modification protects the wall from degradation and therefore from being properly detected by the immune system, which will not remember the bacteria the next time the body is infected."

Related Links:
Cedars-Sinai Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more