LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Model Systems Assist Lung Disease Studies

By LabMedica International staff writers
Posted on 25 May 2017
Print article
Image: Brightfield images of day 50 LBO-derived Matrigel colonies from RUES2 cells (Photo courtesy of the Snoeck Laboratory at Columbia University Medical Center).
Image: Brightfield images of day 50 LBO-derived Matrigel colonies from RUES2 cells (Photo courtesy of the Snoeck Laboratory at Columbia University Medical Center).
Lung organoids generated from human pluripotent stem cells were shown to recapitulate lung development and were posited as potentially useful tools to model lung disease.

Investigators at Columbia University Medical Center generated lung bud organoids (LBOs) from human pluripotent stem cells (hPSCs). These organoid structures were grown in a Matrigel three-dimensional (3D) culture system and developed into branching airway and early alveolar structures that contained mesoderm and pulmonary endoderm tissues.

The investigators reported in the April 24, 2017, online edition of the journal Nature Cell Biology that they had used LBOs as model systems to study disease situations such as infection by respiratory syncytial virus (RSV) and mutation in the gene encoding HPS1 (Hermansky-Pudlak syndrome 1 protein), which causes an early-onset form of intractable pulmonary fibrosis.

Infection in vitro with RSV, which causes small airway obstruction and bronchiolitis in infants, led to swelling, detachment, and shedding of infected cells into the organoid lumens, similar to what has been observed in human lungs. Introduction of mutation in HPS1 led to accumulation of extracellular matrix and mesenchymal cells, suggesting the potential use of this model to recapitulate fibrotic lung disease in vitro.

"Researchers have taken up the challenge of creating organoids to help us understand and treat a variety of diseases," said senior author Dr. Hans-Willem Snoeck, professor of microbiology and immunology at Columbia University Medical Center. "But we have been tested by our limited ability to create organoids that can replicate key features of human disease. Organoids, created with human pluripotent or genome-edited embryonic stem cells, may be the best, and perhaps only, way to gain insight into the pathogenesis of these diseases."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more