We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Artificial Editing Technique Modifies Gene Activity

By LabMedica International staff writers
Posted on 16 May 2017
Print article
Image: Neurons from Angelman syndrome (AS) patients lack expression of the UBE3A protein due to an epigenetic defect. The photomicrograph shows that a new method restored normal expression of the UBE3A protein in neurons derived from the cells of an AS patient by correcting the aberrant methylation pattern (Photo courtesy of the Salk Institute for Biological Studies).
Image: Neurons from Angelman syndrome (AS) patients lack expression of the UBE3A protein due to an epigenetic defect. The photomicrograph shows that a new method restored normal expression of the UBE3A protein in neurons derived from the cells of an AS patient by correcting the aberrant methylation pattern (Photo courtesy of the Salk Institute for Biological Studies).
A team of molecular biologists has developed an artificial epigenetic editing technique that adds methyl groups to DNA and modifies specific gene activity in a hereditary manner.

Certain regions of the genome known as CpG islands or CGIs are segments of DNA where cytosine nucleotides are followed by guanine nucleotides in the linear sequence of bases along the 5' to 3' direction. These are primarily promoter-associated genomic regions and are mostly unmethylated within otherwise highly methylated mammalian genomes. The mechanisms by which CGIs are protected from de novo methylation have not been clarified.

Investigators at the Salk Institute for Biological Studies recently developed a new technique that allowed them to methylate CGIs in stem cells derived from normal or cancerous starting material or from patients suffering from Angelman syndrome (AS), a rare neurodegenerative disorder characterized by aberrant DNA methylation, which causes a loss of the ubiquitin-protein ligase E3A (UBE3A) enzyme in neurons.

They reported in the May 5, 2017, issue of the journal Science that by inserting a segment of CpG-free DNA into targeted CGIs, they were able to induce de novo methylation of the entire CGI in human pluripotent stem cells (PSCs). The methylation status was stably maintained even after the CpG-free DNA was removed, and remained despite the cells being passaged extensively and differentiated.

By targeting the DNA mismatch repair gene MLH1 (mutL homolog 1), the investigators generated a PSC model of a cancer-related epigenetic mutation. In addition, they corrected the DNA methylation in induced PSCs derived from an Angelman syndrome patient and restored UBE3A protein levels in AS neuronal cells grown in culture.

"We are excited at how many new avenues this work opens up for understanding disease processes and developing effective new therapies," said senior author Dr. Juan Carlos Izpisua Belmonte, a professor in the gene expression laboratories at the Salk Institute for Biological Studies. "It was a giant step to discover how to edit the genome--this technology to edit the epigenome is another leap forward."

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The QIAstat-Dx Respiratory Panel Plus has received U.S. FDA clearance (Photo courtesy of QIAGEN)

New Respiratory Syndromic Testing Panel Provides Fast and Accurate Results

Respiratory tract infections are a major reason for emergency department visits and hospitalizations. According to the CDC, the U.S. sees up to 41 million influenza cases annually, resulting in several... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more