LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Induced Pluripotent Stem Cells Recovered from Urine

By LabMedica International staff writers
Posted on 14 Apr 2017
Print article
Image: Three copies of chromosome 21 characterize the karyotype for trisomy Down syndrome (Photo courtesy of Wikimedia Commons).
Image: Three copies of chromosome 21 characterize the karyotype for trisomy Down syndrome (Photo courtesy of Wikimedia Commons).
Urine from individuals with Down syndrome has been utilized as a source of cells, which researchers first transformed into stem cells and then induced to mature into neurons and heart cells.

Investigators at Case Western Reserve University described in the March 28, 2017, online edition of the journal Stem Cells Translational Medicine the method by which they had generated 10 induced pluripotent stem cell (iPSC) lines from epithelial cells recovered from urine samples obtained from individuals with Down syndrome. These cells were presumably of kidney epithelial origin, and were induced using nonintegrating episomal vectors. Episomal vectors offered many advantages over integrating vectors as they eliminated non-specific integration into the host genome and with that eliminated the risk of transformation.

The investigators showed that these Down syndrome iPSCs maintained chromosomal stability for well over 20 passages and were more sensitive to proteotoxic stress than iPSCs with normal chromosome number. Furthermore, these iPSC lines could be differentiated into glutamatergic neurons and cardiomyocytes.

“For the first time, we were able to create induced pluripotent stem cells, or iPSCs, of persons with Down syndrome by cells obtained from urine samples,” said senior author Dr. Alberto Costa, professor of pediatrics and psychiatry at Case Western Reserve University. “Our methods represent a significant improvement in iPSC technology, and should be an important step toward the development of human cell-based platforms that can be used to test new medications designed to improve the quality of life of people with Down syndrome.”

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more