We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Modified Version of CRISPR/Cas9 Identifies Parasite Infectivity Genes

By LabMedica International staff writers
Posted on 13 Sep 2016
Print article
Image: A photomicrograph of Toxoplasma gondii tachyzoites, stained with Giemsa (Photo courtesy of the CDC).
Image: A photomicrograph of Toxoplasma gondii tachyzoites, stained with Giemsa (Photo courtesy of the CDC).
A modified version of the CRISPR/Cas9 gene editing system was used to map the genome of the apicomplexan parasite Toxoplasma gondii, which, in addition to revealing which genes were necessary for this pathogen's survival, gave insights into genes necessary for infection by the malaria parasite Plasmodium falciparum.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 enzyme and appropriate guide RNAs (sgRNAs) into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR/Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides that shepherd the Cas9 protein to the target gene on a DNA strand.

In the current study, investigators at the Whitehead Institute (Cambridge, MA, USA) modified CRISPR/Cas9 to reduce the overall damage caused to the T. gondii genome while increasing the precision of its gene targeting. This approach allowed them to assess the contribution of each of T. gondii’s 8,158 genes and study their individual functions during infection of human fibroblasts.

Results published in the September 1, 2016, online edition of the journal Cell revealed approximate 200 genes common to all apicomplexans that contributed to the parasites’ ability to infect human cells. The investigators were particularly interested in a gene called claudin-like apicomplexan microneme protein (CLAMP), which encoded an invasion factor that resembled mammalian tight-junction proteins and localized to secretory organelles, making it critical to the initiation of infection. They reported that CLAMP was present throughout sequenced apicomplexan genomes and was essential during the asexual stages of the malaria parasite Plasmodium falciparum.

“There has never been a really good way of looking at the function of all genes in any apicomplexan parasite,” said senior author Dr. Sebastian Lourido a fellow of the Whitehead Institute. “We have introduced a method to assess the function of the entire genome. This technology can be used to study a variety of topics, from nutrient acquisition and responses to immune pressures to epistasis and genetic interactions. This is an important leap forward in what is possible to investigate in these parasites.”

Related Links:
Whitehead Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more