We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Human Liver Organoids Thrive When Transplanted into Mouse Liver Failure Model

By LabMedica International staff writers
Posted on 13 Sep 2016
Print article
Image: A biodegradable scaffold (left) and human tissue-engineered liver (right) (Photo courtesy of the Saban Research Institute at Children\'s Hospital Los Angeles).
Image: A biodegradable scaffold (left) and human tissue-engineered liver (right) (Photo courtesy of the Saban Research Institute at Children\'s Hospital Los Angeles).
Liver disease researchers have demonstrated in a mouse model that it may be feasible to treat some types of liver failure with transplanted multicellular liver organoid units composed of a heterogeneous cellular population that includes adult stem and progenitor cells.

Liver disease affects large numbers of patients, yet there are limited treatments available to replace absent or ineffective cellular function of this crucial organ. The only effective therapy for end-stage liver failure is liver transplantation, which is profoundly limited by scarce donor supply and the necessity for life-long immunosuppression treatment. On the other hand, in some conditions, such as inborn errors of metabolism or transient states of liver insufficiency, patients may be treated by providing partial quantities of functional liver tissue.

In order to develop a robust means for transplanting functional donor liver tissue, investigators at The Saban Research Institute of Children's Hospital Los Angeles (CA, USA) transplanted multicellular human or mouse liver organoid units composed of a heterogeneous cellular population that included adult stem and progenitor cells into a mouse model of inducible liver failure.

They reported in the August 30, 2016, online edition of the journal Stem Cells Translational Medicine that both mouse and human tissue-engineered liver (TELi) formed in the animals. TELi contained normal liver components such as hepatocytes with albumin expression, CK19-expressing bile ducts and vascular structures with alpha-smooth muscle actin expression, desmin-expressing stellate cells, and CD31-expressing endothelial cells. After four weeks, TELi contained proliferating albumin-expressing cells, and identification of beta-2-microglobulin-expressing cells demonstrated that the majority of human TELi in the mice was composed of transplanted human cells. Human albumin was detected in the host mouse serum, indicating the development of in vivo secretory function.

"Based on the success in my lab generating tissue-engineered intestine and other cell types, we hypothesized that by modifying the protocol used to generate intestine, we would be able to develop liver organoid units that could generate functional tissue-engineered liver when transplanted," said senior author Dr. Tracy C. Grikscheit, professor of surgery at The Saban Research Institute of Children's Hospital Los Angeles.

Related Links:
The Saban Research Institute of Children's Hospital Los Angeles

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more