We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Magnetically Guided Bacteria Transport Drug-Loaded Liposomes to Hypoxic Tumors

By LabMedica International staff writers
Posted on 24 Aug 2016
Print article
Image: Nanorobotic agents composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug\'s injection point and the area of the body to cure (Photo courtesy of the Montréal Nanorobotics Laboratory, Polytechnique Montréal).
Image: Nanorobotic agents composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug\'s injection point and the area of the body to cure (Photo courtesy of the Montréal Nanorobotics Laboratory, Polytechnique Montréal).
A novel transport system for toxic chemotherapeutic drugs is based on a species of bacteria that can be magnetically guided to a tumor where it releases drug-loaded liposomes into the tumor's hypoxic center.

Investigators at Polytechnique Montréal (Canada) described using Magnetococcus marinus strain MC-1 as the foundation for a novel drug delivery system.

Magnetococcus marinus is a species of Alphaproteobacteria that has the peculiar ability to form a structure called a magnetosome, a membrane encased single-magnetic-domain mineral crystals formed by biomineralization, which allows the cells to orientate along the Earth’s geomagnetic field. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system.

The investigators took advantage of this natural tendency of MC-1 cells by using it to transport liposomes that had been loaded with an anticancer drug. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell, which were guided by a computer-controlled external magnetic field.

In a proof-of-principle study published in the August 15, 2016, online edition of the journal Nature Nanotechnology the bacteria were injected near the tumor in severe combined immunodeficient beige mice and magnetically guided. Results indicated that up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts.

"These legions of nanorobotic agents were actually composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug's injection point and the area of the body to cure," said senior author Dr. Sylvain Martel, professor of medical nanorobotics at Polytechnique Montréal. "The drug's propelling force was enough to travel efficiently and enter deep inside the tumors. This innovative use of nanotransporters will have an impact not only on creating more advanced engineering concepts and original intervention methods, but it also throws the door wide open to the synthesis of new vehicles for therapeutic, imaging and diagnostic agents. Chemotherapy, which is so toxic for the entire human body, could make use of these natural nanorobots to move drugs directly to the targeted area, eliminating the harmful side effects while also boosting its therapeutic effectiveness."

Related Links:
Investigators at Polytechnique Montréal

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more