LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

HIV Relies on Host Proteins to Clear the Way to the Nucleus

By LabMedica International staff writers
Posted on 06 Jul 2016
Print article
Image: HIV-1 viral cores (red) accumulate around the cell nucleus (blue) but remain unable to enter following depletion of the motor protein KIF5B (Photo courtesy of Loyola University Chicago).
Image: HIV-1 viral cores (red) accumulate around the cell nucleus (blue) but remain unable to enter following depletion of the motor protein KIF5B (Photo courtesy of Loyola University Chicago).
The ability of HIV to transit the cytoplasm and enter the nucleus of an infected cell was found to depend on the combined activities of two host proteins, the Kinesin-1 motor protein, KIF5B, and the nuclear pore component Nup358.

Following envelope mediated fusion, the HIV-1 nuclear core is released into the cytoplasm of the target cell and undergoes a series of modifications that result in the nuclear import of the viral genome, which ultimately leads to the integration of viral DNA into the host cell genome. Previous studies had found that disruption of microtubules, or depletion of dynein or kinesin motor proteins, perturbed the normal uncoating and trafficking of the viral genome.

In the current study, which was published in the June 21, 2016, online edition of the journal PLOS Pathogens, investigators at Loyola University (Chicago, IL, USA) enhanced the understanding of how HIV infection progresses by showing that the Kinesin-1 motor protein, KIF5B, induced a relocalization of the nuclear pore component Nup358 into the cytoplasm during HIV-1 infection. This relocalization of NUP358 was dependent on the HIV-1 capsid. NUP358 directly associated with viral cores following cytoplasmic translocation.

The interaction between NUP358 and the HIV-1 core was dependent on multiple capsid binding surfaces, as this association was not observed following infection with capsid mutants in which a conserved hydrophobic binding pocket (N74D) or the cyclophilin A binding loop (P90A) was disrupted. KIF5B knockdown also prevented the nuclear entry and infection by HIV-1, but did not exert a similar effect on the N74D or P90A capsid mutants, which do not rely on Nup358 for nuclear import.

Results obtained during these studies revealed a novel role for the microtubule motor protein KIF5B in the nuclear import of the viral genome and identified potential drug therapeutic intervention targets.

Related Links:
Loyola University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more