LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Disrupting Glutamine Metabolism Slows Liver Cancer Growth

By LabMedica International staff writers
Posted on 23 Jun 2016
Print article
Image: A fluorescent microscope image of liver cells and the chemical structure of glutamine (Photo courtesy of Dr. Kristina Schoonjans, Ecole Polytechnique Fédérale de Lausanne).
Image: A fluorescent microscope image of liver cells and the chemical structure of glutamine (Photo courtesy of Dr. Kristina Schoonjans, Ecole Polytechnique Fédérale de Lausanne).
Cancer researchers used a line of genetically engineered mice to demonstrate the dependency of liver cancer cells on the amino acid glutamine as their primary energy source.

Investigators at the Ecole Polytechnique Fédérale de Lausanne (Switzerland) worked with a line of "knock-out" mice that had been genetically engineered to lack the gene for production of the enzyme LRH-1 (liver receptor homolog 1). LRH-1 is a member of the nuclear receptor family of intracellular transcription factors and plays a critical role in the regulation of development, cholesterol transport, bile acid homeostasis, and steroidogenesis.

The investigators reported in the June 1, 2016, issue of the journal Genes & Development that gain and loss of function of LRH-1 in the liver modulated the expression and activity of mitochondrial glutaminase 2 (GLS2), the first and rate-limiting step of the glutamine pathway.

Closing down this pathway by eliminating LRH-1 prevented the utilization of glutamine as a fuel and put the cancerous cells into tremendous metabolic distress. Acute and chronic deletion of LRH-1 in the liver prevented the deamination of glutamine and reduced glutamine-dependent anaplerosis (the process of replenishment of depleted metabolic cycle or pathway intermediates).

The reduction in the lysis of glutamine limited the availability of alpha-ketoglutarate, which in turn inhibited mTORC1 (mammalian target of rapamycin (mTOR) complex 1) signaling to eventually block cell growth and proliferation.

"Inhibiting LRH-1 can thus be an effective way to starve only liver cancer cells, while leaving normal cells intact," said contributing author Dr. Kristina Schoonjans, head of the laboratory of metabolic signaling at the Ecole Polytechnique Fédérale de Lausanne.

Related Links:
Ecole Polytechnique Fédérale de Lausanne

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more