LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Aptamer Prevents Serpin Misfolding without Damaging Protease Inhibition

By LabMedica International staff writers
Posted on 20 Jun 2016
Print article
Image: Incorrectly folded serpin proteins can cause a variety of diseases. Danish researchers have found a solution for preventing this misfolding (Photo courtesy of Jan K. Jensen, Aarhus University).
Image: Incorrectly folded serpin proteins can cause a variety of diseases. Danish researchers have found a solution for preventing this misfolding (Photo courtesy of Jan K. Jensen, Aarhus University).
A team of Danish molecular biologists has developed an aptamer that blocks misfolding of mutant serpin protease inhibitors while maintaining the protein's inhibitory function.

Aptamers are nucleic acid species that have been engineered through repeated rounds of in vitro selection to bind to various molecular targets such as small molecules, proteins, and nucleic acids. Aptamers are useful in biotechnological and therapeutic applications as they offer molecular recognition properties that rival that of antibodies. In addition to their discriminate recognition, aptamers offer advantages over antibodies, as they can be engineered completely in a test tube, are readily produced by chemical synthesis, possess desirable storage properties, and elicit little or no immunogenicity in therapeutic applications. Relative to monoclonal antibodies, aptamers are small, stable, and non-immunogenic.

Most serpins are fast and specific inhibitors of extracellular serine proteases controlling biological processes such as blood coagulation, fibrinolysis, tissue remodeling, and inflammation. The acronym serpin was originally coined because the first serpins to be identified acted on chymotrypsin-like serine proteases (serine protease inhibitors).

The inhibitory activity of serpins is based on a conserved metastable structure and their conversion to a more stable state during reaction with the target protease. However, the metastable state also makes serpins vulnerable to mutations, resulting in disease caused by inactive and misfolded monomeric or polymeric forms (“serpinopathy”). Misfolding can occur either intracellularly (type-I serpinopathies) or extracellularly (type-II serpinopathies). Most drug candidates that have been designed to prevent serpin misfolding also inhibit the anti-proteolytic functions of the serpins.

Investigators at Aarhus University (Denmark) reported in the June 2, 2016, online edition of the journal Cell Chemical Biology that they had isolated a 2′-fluoropyrimidine-modified RNA aptamer, which inhibited a mutation-induced inactivating misfolding of the serpin alpha1-antichymotrypsin.

The investigators claimed that this aptamer was the first agent able to stabilize a type-II mutation of a serpin without interfering with the inhibitory mechanism, thereby presenting a solution for the long-standing challenge of preventing pathogenic misfolding without compromising the inhibitory function.

Related Links:
Aarhus University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more