LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Stem Cells Induced by Low Molecular Weight Compounds Transform into Working Heart and Brain Cells

By LabMedica International staff writers
Posted on 12 May 2016
Print article
Image: A human heart cell that was chemically reprogrammed from a human skin cell (Photo courtesy of Dr. Nan Cao, Gladstone Institutes).
Image: A human heart cell that was chemically reprogrammed from a human skin cell (Photo courtesy of Dr. Nan Cao, Gladstone Institutes).
A team of cell biologists has demonstrated the feasibility of using cocktails of low molecular weight compounds to induce skin cells to revert to a stem cell-like state that allowed them to be reprogrammed into cardiac or neural cells.

Previous methods for transforming skin cells into induced pluripotent stem cells (IPSCs) and then into heart or brain cells required adding external genes to the cells. Investigators at the Gladstone Institutes (San Francisco, CA, USA) have overcome this requirement by demonstrating that combinations of nine compounds (9C and 9M) could be used to generate cardiomyocyte-like and neural stem cell-like cells from human and mouse fibroblasts.

They reported in the April 28, 2016, online edition of the journal Science that chemically induced cardiomyocyte-like cells (ciCMs) uniformly contracted and resembled human cardiomyocytes in their transcriptome, epigenetic, and electrophysiological properties. 9C treatment of human fibroblasts resulted in a more open-chromatin conformation at key heart developmental genes, enabling their promoters/enhancers to bind effectors of major cardiogenic signals. When transplanted into infarcted mouse hearts, 9C-treated fibroblasts were efficiently converted to ciCMs.

In a second paper published in the April 28, 2016, online edition of the journal Cell Stem Cell the investigators reported that neural stem cell-like cells (ciNSLCs) generated by using a cocktail of nine components (M9) closely resembled primary neural stem cells molecularly and functionally. Transcriptome analysis revealed that M9 induced a gradual and specific conversion of fibroblasts toward a neural fate. During reprogramming specific transcription factors such as Elk1 (ETS domain-containing protein Elk-1) and Gli2 (GLI family zinc finger 2) that are downstream of M9-induced signaling pathways bound and activated endogenous master neural genes to specify neural identity.

“This method brings us closer to being able to generate new cells at the site of injury in patients,” said senior author Sheng Ding, professor of pharmaceutical chemistry at the Gladstone Institutes. “Our hope is to one-day treat diseases like heart failure or Parkinson’s disease with drugs that help the heart and brain regenerate damaged areas from their own existing tissue cells. This process is much closer to the natural regeneration that happens in animals like newts and salamanders, which has long fascinated us.”

Related Links:
Gladstone Institutes

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more