We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Supply of Lipid Precursors Modulates Growth of Breast Cancer Cells

By LabMedica International staff writers
Posted on 21 Apr 2016
Print article
Image: A photomicrograph showing that breast tumor cells have high levels of LIPG (endothelial lipase) expression in their membranes (Photo courtesy of the Institute for Research in Biomedicine, Barcelona).
Image: A photomicrograph showing that breast tumor cells have high levels of LIPG (endothelial lipase) expression in their membranes (Photo courtesy of the Institute for Research in Biomedicine, Barcelona).
An enzyme present in the cell membranes of breast cancer cells, which supplies lipid precursors that enable rapid cell growth, has emerged as a promising drug target.

Investigators at the Institute for Research in Biomedicine (Barcelona, Spain) reported in the April 5, 2016, online edition of the journal Nature Communications that rapidly growing breast cancer cells were dependent on a mechanism to supply precursors for intracellular lipid production derived from extracellular sources, and they suggested that the enzyme endothelial lipase (LIPG) fulfilled this function.

LIPG expression allowed the import of lipid precursors, thereby contributing to breast cancer proliferation. Analyses of more than 500 clinical samples from patients with various kinds of breast tumors revealed that 85% had high levels of LIPG expression. Thus, LIPG was identified as an essential component of the lipid metabolic adaptations that breast cancer cells, and not normal tissue, must undergo to support high proliferation rates.

The investigators found that LIPG expression was controlled by the signaling molecules FoxA1 (forkhead box protein A1) or FoxA2 (forkhead box protein A2) in all breast cancer subtypes. Experiments with breast cancer cell cultures and in animal models showed that downregulation of either LIPG or FoxA signaling resulted in decreased proliferation and impaired synthesis of intracellular lipids.

"This new knowledge related to metabolism could be the Achilles heel of breast cancer," said senior author Dr. Roger Gomis, oncology group leader at the Institute for Research in Biomedicine. "LIPG has many virtues as a target. If a drug were found to block its activity, it could be used to develop more efficient chemotherapy treatments that are less toxic than those currently available."

Related Links:
Institute for Research in Biomedicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more