We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticle Drug Delivery Avoids Cancer Cells' Protein Pumps

By LabMedica International staff writers
Posted on 27 Mar 2016
Print article
Image: The iNPG drug delivery process (Photo courtesy of Houston Methodist Research Institute).
Image: The iNPG drug delivery process (Photo courtesy of Houston Methodist Research Institute).
A novel nanoparticle delivery system avoids excretion by cancer cells' protein pumps and transports the highly toxic anti-cancer drug doxorubicin (Dox) directly into the nuclei of cancer cells without causing damage to normal tissues or cells.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer.

A team of investigators at the Houston Methodist Research Institute (TX, USA) reported developing a method to avoid the toxic effects of Dox while delivering it in high concentrations to its target inside tumor cells.

In the March 14, 2016, online edition of the journal Nature Biotechnology they described development of an injectable nanoparticle generator (iNPG), a micrometer-sized porous silicon-based particle loaded with a doxorubicin-poly(L-glutamic acid) conjugate (pDox) that was created using a pH-sensitive cleavable linker. These iNPG particles were injected into mice, and accumulated at tumors due to natural tropism and to the enhanced vascular dynamics at the tumor sites.

Once inside the cancer cell, the acidic pH in the vicinity of the nucleus released the drug conjugate from the nanoparticles. Upon release from iNPG, pDox spontaneously formed nanometer-sized particles in aqueous solution. These pDox nanoparticles were transported to the perinuclear region of the cell and cleaved to free the Dox, which killed the cell. The direct delivery to the nucleus avoided excretion of the Dox by cellular drug efflux protein pumps.

Compared to treatment with its individual components or with current therapeutic formulations, iNPG-pDox showed enhanced efficacy in MDA-MB-231 and 4T1 mouse models of metastatic breast cancer, including functional cures in 40%–50% of treated mice. These animals remained in remission for at least eight months, which is equivalent to about 24 years of long-term survival following metastatic disease for humans.

"This may sound like science fiction, like we have penetrated and destroyed the Death Star, but what we discovered is transformational. We invented a method that actually makes the nanoparticles inside the cancer and releases the drug particles at the site of the cellular nucleus. With this injectable nanoparticle generator, we were able to do what standard chemotherapy drugs, vaccines, radiation, and other nanoparticles have all failed to do," said contributing author Dr. Mauro Ferrari, CEO of the Houston Methodist Research Institute. "If this research bears out in humans, and we see even a fraction of this survival time, we are still talking about dramatically extending life for many years. That is essentially providing a cure in a patient population that is now being told there is none."

Related Links:

Houston Methodist Research Institute


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The QIAstat-Dx Respiratory Panel Plus has received U.S. FDA clearance (Photo courtesy of QIAGEN)

New Respiratory Syndromic Testing Panel Provides Fast and Accurate Results

Respiratory tract infections are a major reason for emergency department visits and hospitalizations. According to the CDC, the U.S. sees up to 41 million influenza cases annually, resulting in several... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more