LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Structural Studies Reveal Molecular Basis for Bacterial Motility in the Urinary Tract

By LabMedica International staff writers
Posted on 23 Mar 2016
Print article
Image: Using the protein FimH (yellow/red) located at the tip of long protrusions, the bacterial pathogen E. coli (grey) attaches to cell surfaces of the urinary tract (Photo courtesy of Maximilian Sauer, ETH Zürich).
Image: Using the protein FimH (yellow/red) located at the tip of long protrusions, the bacterial pathogen E. coli (grey) attaches to cell surfaces of the urinary tract (Photo courtesy of Maximilian Sauer, ETH Zürich).
A team of molecular microbiologists has unraveled the mechanism used by Escherichia coli bacteria to bind to cells lining the urinary tract and explained how the pathogen migrates to the bladder despite the strong force of urine flowing in the other direction.

E. coli attaches to host epithelia via the fimbrial adhesion FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins.

Investigators at the University of Basel (Switzerland) and ETH Zurich (Switzerland) established a model system for fimbrial FimH function. A fimbril is a proteinaceous appendage in many gram-negative bacteria that is thinner and shorter than a flagellum.

The investigators revealed, in a paper published in the March 7, 2016, online edition of the journal Nature Communications, a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction, and molecular dynamics simulations. They found that FimH bound to sugar structures on the cell surface increasingly tightly the more it was pulled. As strong tensile forces developed during urination, FimH protected the bacteria from being flushed out. In the absence of tensile force, the FimH pilin domain allosterically accelerated spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity and allowing the bacteria to release from the cell surface and migrate in the direction of the bladder.

“Through the combination of several biophysical and biochemical methods, we have been able to elucidate the binding behavior of FimH in more detail than ever before”, said senior author Dr. Rudolf Glockshuber, professor of molecular biology and biophysics at ETH Zurich. “The protein FimH is composed of two parts, of which the second non-sugar binding part regulates how tightly the first part binds to the sugar molecule. When the force of the urine stream pulls apart the two protein domains, the sugar binding site snaps shut. However, when the tensile force subsides, the binding pocket reopens. Now the bacteria can detach and swim upstream the urethra.”

Related Links:
University of Basel
ETH Zurich


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more