LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Co-opt Slow DNA Release to Improve Accuracy of CRISPR/Cas9 Genome Editing

By LabMedica International staff writers
Posted on 31 Jan 2016
Print article
Image: A view of the Cas9 protein (red and blue) bound to a double strand of DNA (purple and grey). After both strands are cut, one DNA strand (purple dots) is free and able to bind with a piece of DNA to be inserted at the break. This behavior can be utilized to significantly boost the efficiency of gene editing (Photo courtesy of Dr. Christopher Richardson, University of California, Berkeley).
Image: A view of the Cas9 protein (red and blue) bound to a double strand of DNA (purple and grey). After both strands are cut, one DNA strand (purple dots) is free and able to bind with a piece of DNA to be inserted at the break. This behavior can be utilized to significantly boost the efficiency of gene editing (Photo courtesy of Dr. Christopher Richardson, University of California, Berkeley).
A careful study of the interaction of the Cas9 enzyme with target DNA has enabled genomics researchers to significantly improve the success rate of CRISPR-Cas9 gene editing.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR-Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at the University of California, Berkeley (USA) reported in the January 20, 2016, online edition of the journal Nature Biotechnology that dissociation of Cas9 from double-stranded DNA (dsDNA) substrates was slow (lifetime of about six hours) but that, before complete dissociation, Cas9 asymmetrically released the 3′ end of the cleaved DNA strand that was not complementary to the CRISPR sgRNA (guide strand). Taking advantage of this slow process, the investigators designed single-stranded DNA (ssDNA) donors of the optimal length complementary to the strand that was released first. This modification of the technique increased the rate of homology-directed repair (HDR) in human cells when using Cas9 variants to up to 60%.

"The exciting thing about CRISPR-Cas9 is the promise of fixing genes in place in our genome, but the efficiency for that can be very low," said senior author Dr. Jacob Corn, professor of biochemistry, biophysics, and structural biology at the University of California, Berkeley. "If you think of gene editing as a word processor, we know how to cut, but we need a more efficient way to paste and glue a new piece of DNA where we make the cut."

Related Links:

University of California, Berkeley


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more