LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Viscoelastic Hydrogels Promote Bone Formation in 3D Cell Cultures

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Scanning electron microscope image of the cross section of a fast relaxing hydrogel containing mesenchymal stem cells. The cells differentiated into osteoblasts and integrated in the matrix (Photo courtesy of Harvard University).
Image: Scanning electron microscope image of the cross section of a fast relaxing hydrogel containing mesenchymal stem cells. The cells differentiated into osteoblasts and integrated in the matrix (Photo courtesy of Harvard University).
Stem cell researchers have devised a viscoelastic hydrogel matrix that encourages stem cells grown in three-dimensional culture to differentiate into bone tissue, which has promising applications in the realm of bone regeneration, growth, and healing.

Viscoelasticity is a molecular rearrangement. When stress is applied to a viscoelastic material such as a polymer, some areas of the material's long polymer chains change positions. This movement or rearrangement is called creep. Polymers remain a solid material even when these parts of their chains are rearranging in order to accompany the stress, and as this occurs, it creates a back stress in the material. When the back stress is the same magnitude as the applied stress, the material no longer creeps. When the original stress is taken away, the accumulated back stresses will cause the polymer to return to its original form. The material creeps, which gives the prefix visco-, and the material fully recovers, which gives the suffix- elasticity.

Investigators at Harvard University (Cambridge, MA, USA) developed hydrogels for three-dimensional culture with different stress relaxation responses. They reported in the November 30, 2015, online edition of the journal Nature Materials that these types of materials enhanced cell spreading, proliferation, and the osteogenic differentiation of mesenchymal stem cells (MSCs) in cultures with gels with faster relaxation rates. Strikingly, MSCs formed a mineralized, collagen-1-rich matrix similar to bone in rapidly relaxing hydrogels. The effects of stress relaxation were mediated by adhesion-ligand binding, actomyosin contractility, and mechanical clustering of adhesion ligands.

"This work both provides new insight into the biology of regeneration, and is allowing us to design materials that actively promote tissue regeneration," said senior author Dr. David Mooney, professor of bioengineering at Harvard University. "In addition to introducing a new concept to the fields of mechanobiology and regenerative medicine, I expect this work will lead to an explosion of new ideas and research to examine how a number of other material mechanical properties influence cell behavior."

The Harvard University Office of Technology Development has filed a patent application and is actively exploring commercial opportunities for the viscoelastic cell culture technology.

Related Links:

Harvard University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more