LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticle Targeting May Revolutionize Cardiac Photoablation Therapy

By LabMedica International staff writers
Posted on 09 Nov 2015
Print article
Image: Micrographs show a cardiac myocyte cell (top) and an attached fibroblast cell (bottom) in a rat heart, after the injection of the newly developed nanoparticle. In the second frame, red light has been applied. The red coloring indicates that the myocyte, which causes cardiac arrhythmia, has been killed, while the fibroblast remains unharmed (Photo courtesy of the University of Michigan).
Image: Micrographs show a cardiac myocyte cell (top) and an attached fibroblast cell (bottom) in a rat heart, after the injection of the newly developed nanoparticle. In the second frame, red light has been applied. The red coloring indicates that the myocyte, which causes cardiac arrhythmia, has been killed, while the fibroblast remains unharmed (Photo courtesy of the University of Michigan).
A light-based therapeutic approach to correct cardiac arrhythmia has been improved by the development of a nanotechnique that allows precise delivery of photosensitive molecules to malfunctioning cardiomyocytes while avoiding normal cells.

Abnormal heartbeats, called arrhythmias, can be stopped by photoablation (light-induced killing), but the use of light energy to terminate malfunctioning cardiomyocytes runs the risk of damaging the other dozen or so cell types in the heart.

To increase the precision of the photoablation procedure investigators at the University of Michigan (Ann Arbor, USA) engineered a type of nanoparticle containing a cardiac-targeting peptide (CTP) and a photosensitizer, chlorin e6 (Ce6), for specific delivery to myocytes. After uptake by myoctes, low energy laser light introduced through a catheter destroyed only the cells that had absorbed the nanoparticles, leaving the other heart cells unharmed.

The investigators reported in the October 28, 2015, online edition of the journal Science Translational Medicine that they confirmed the specificity of the method in vitro using adult rat heart cell and human stem cell–derived cardiomyocyte and fibroblast co-cultures. In vivo, the CTP-Ce6 nanoparticles were injected intravenously into rats and, upon laser illumination of the heart, induced localized, myocyte-specific ablation with 85% efficiency, restoring sinus rhythm without collateral damage to other cell types in the heart, such as fibroblasts. In both sheep and rat hearts ex vivo, upon perfusion of CTP-Ce6 particles, laser illumination led to the formation of a complete electrical block at the ablated region and restored the physiological rhythm of the heart.

"In our cancer work, we used nanoparticles that were about 120 nanometers in size," said contributing author Dr. Raoul Kopelman, professor of chemistry, physics, and applied physics at the University of Michigan. "To work inside the heart, we needed to develop a particle that did the same job but was only six nanometers in size. The great thing about this treatment is that it is precise down to the level of individual cells. Drugs spread all over the body and high-power lasers char the tissue in the heart. This treatment is much easier and much safer."

Related Links:

University of Michigan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Automatic Nucleic Acid Extractor
GeneRotex 24

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more

Pathology

view channel
Image: The new AI tool can help beat brain tumors (Photo courtesy of Crytal Light/Shutterstock)

New AI Tool Classifies Brain Tumors More Quickly and Accurately

Precision in diagnosing and categorizing tumors is essential for delivering effective treatment to patients. Currently, the gold standard for identifying various types of brain tumors involves DNA methylation-based... Read more