LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Differential Gene Expression Aids Disseminated Tumor Cells Adapt to Diverse Microenvironments

By LabMedica International staff writers
Posted on 09 Nov 2015
Print article
Image: A space-filling model of the PTEN protein (blue) complexed with tartaric acid (brown) (Photo courtesy of Wikimedia Commons).
Image: A space-filling model of the PTEN protein (blue) complexed with tartaric acid (brown) (Photo courtesy of Wikimedia Commons).
A recent paper described how cancer cells that have broken away from a primary tumor are able to establish the conditions they need to survive in a distant site that possesses a quite different microenvironment.

Investigators at the University of Notre Dame (South Bend, IN, USA) and at the University of Texas MD Anderson Cancer Center (Houston, USA) reported in the October 19, 2015, online edition of the journal Nature that the ability of disseminated tumor cells to establish themselves in distant locations was dependent on expressing or silencing the tumor suppressor gene PTEN.

PTEN (phosphatase and tensin homolog) is one of the most commonly lost tumor suppressors in human cancer. During tumor development, mutations and deletions of PTEN occur that inactivate its enzymatic activity leading to increased cell proliferation and reduced cell death. Frequent genetic inactivation of PTEN occurs in glioblastoma, endometrial cancer, prostate cancer, and reduced expression is found in many other tumor types such as lung and breast cancer. When the PTEN enzyme is functioning properly, it acts as part of a chemical pathway that signals cells to stop dividing and causes cells to undergo programmed cell death (apoptosis) when necessary. These functions prevent uncontrolled cell growth that can lead to the formation of tumors. There is also evidence that the protein made by the PTEN gene may play a role in both cell movement and adhesion of cells to surrounding tissues.

The investigators found that both human and mouse tumor cells with normal expression of PTEN lost expression of this gene after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumor cells was restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation was epigenetically regulated by microRNAs from brain astrocytes.

Astrocyte-derived exosomes mediated an intercellular transfer of PTEN-targeting microRNAs to metastatic tumor cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescued the PTEN loss and suppressed brain metastasis in vivo. This adaptive PTEN loss in brain metastatic tumor cells led to an increased secretion of the chemokine CCL2, which recruited myeloid cells that reciprocally enhanced the outgrowth of brain metastatic tumor cells via enhanced proliferation and reduced apoptosis.

Contributing author Dr. Siyuan Zhang, professor of cancer research at Notre Dame University, said, "The microenvironment has tremendous impact on how the gene is expressed, what type of gene will be expressed. It is definitely not due to genetic mutation. The point of this paper is we should not overlook the huge influence of the tissue architecture, the tissue environment, the tissue composition. It is a dynamic process."

Related Links:

University of Notre Dame
University of Texas MD Anderson Cancer Center 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more