LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Interferon-Beta Gene Therapy Reverses Parkinson's Disease Symptoms in Mouse Model

By LabMedica International staff writers
Posted on 19 Oct 2015
Print article
Image: Micrograph showing brain cells with signs of Parkinson\'s disease (Photo courtesy of the University of Copenhagen).
Image: Micrograph showing brain cells with signs of Parkinson\'s disease (Photo courtesy of the University of Copenhagen).
The lack of cytokine interferon-beta (IFN-beta) signaling in a mouse model caused formation of Lewy bodies in the animals' brains and triggered neurodegeneration similar to that seen in the brains of human Parkinson's disease (PD) patients.

A Lewy body is composed of the protein alpha-synuclein associated with other proteins, such as ubiquitin, neurofilament protein, and alpha B crystalline. Lewy bodies are a feature of alpha-synucleinopathies such as dementia with Lewy bodies, Parkinson's disease, and multiple system atrophy. They are also found in the CA2-3 region of the hippocampus in Alzheimer's disease.

Investigators at the University of Copenhagen (Denmark) reported in the October 8, 2015, issue of the journal Cell that lack of cytokine interferon-beta (IFN-beta) signaling caused spontaneous neurodegeneration in the absence of neurodegenerative disease-causing mutant proteins. Mice lacking IFN-beta function exhibited motor and cognitive learning impairments with accompanying alpha-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-beta signaling caused defects in neuronal autophagy prior to alpha-synucleinopathy, which was associated with accumulation of aged and dysfunctional mitochondria.

Recombinant IFN-beta treatment of mice lacking the cytokine reversed PD symptoms by promoting neurite growth and branching, autophagy flux, and alpha-synuclein degradation in neurons. In addition, lentiviral transfection of the interferon-beta gene and subsequent IFN-beta overexpression prevented dopaminergic neuron loss in a familial Parkinson’s disease model.

"This is one of the first genes found to cause pathology and clinical features of non-familial PD and DLB (dementia with Lewy bodies), through accumulation of disease-causing proteins. It is independent of gene mutations known from familial PD and when we introduced IFN-beta-gene therapy, we could prevent neuronal death and disease development. Our hope is that this knowledge will enable development of more effective treatment of PD," said senior author Dr. Shohreh Issazadeh-Navikas, head of the neuroinflammation unit at the University of Copenhagen.

Related Links:

University of Copenhagen 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more