LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Mathematical Models Guide Microliter Doses of Drugs to Specific Pathological Sites in the Lungs

By LabMedica International staff writers
Posted on 16 Sep 2015
Print article
Image: A small liquid plug in the bronchus was manipulated by air ventilation to deliver a drug into the most distant alveoli (Photo courtesy of Dr. Jinho Kim, Columbia University).
Image: A small liquid plug in the bronchus was manipulated by air ventilation to deliver a drug into the most distant alveoli (Photo courtesy of Dr. Jinho Kim, Columbia University).
A recent paper described a novel technique for precise delivery of microliter quantities of drugs directly to selected pathological areas in the lungs.

In order to treat lung diseases such as cystic fibrosis, bronchopneumonia, chronic obstructive pulmonary disease, and lung cancer, drugs are administered in a systemic fashion, either orally or by aerosol inhalation. Large amounts of the drug have to be given in order to achieve therapeutic levels at the pathological site, and these doses may cause adverse effects to other organs in the body.

Investigators at Columbia University (New York, NY, USA) reported in the August 31, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that they had developed a method for the precise delivery of drugs to a designated area of the lungs, which would lower the required dosage and reduce unwanted side effects.

Their method utilized a soluble liquid plug of very small volume (less than one milliliter) that was instilled into the upper airways. Programmed air ventilation of the lungs was employed to push the plug into a more distal airway to achieve deposition of liquid film onto the lung epithelium at a precisely determined location. The plug volume and ventilation conditions were determined by mathematical modeling of plug transport in a tubular geometry.

The investigators used three different in vivo imaging methods to demonstrate the application of targeted liquid film deposition to the lungs of animals in a rat model system. These results suggests that instillation of microvolumes of liquid into a ventilated pulmonary airway could be an effective strategy to deliver exact doses of drugs to targeted pathologic regions of the lung, especially those inaccessible by bronchoscopy. Using this method increased the in situ efficacy of the drug while minimizing any systemic side effects.

"We envision that our micro-volume liquid instillation approach will enable predictable drug concentrations at the target site, reducing the amount of drug required for effective disease treatment with significantly reduced side effects," said senior author Dr. Gordana Vunjak-Novakovic, professor of biomedical engineering and of medical sciences at Columbia University. "We are fascinated by the opportunities that bioengineering approaches offer to more effectively treat lung disease. The lung is a hugely complex organ that has billions of cells within a hierarchically organized tissue that cannot be built from scratch. Four years ago, we started research of lung regeneration using stem cells and bioengineering methods. And we continue to work with our clinical colleagues to develop new treatment approaches for treating lung disease."

Related Links:

Columbia University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more