We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nanoparticle-Delivered siRNA Shrinks Tumors in Mouse Model

By LabMedica International staff writers
Posted on 20 Jul 2015
Print article
Image: TEM (transmission electron micrograph) of a mesoporous silica nanoparticle (Photo courtesy of Wikimedia Commons).
Image: TEM (transmission electron micrograph) of a mesoporous silica nanoparticle (Photo courtesy of Wikimedia Commons).
Cancer researchers employed a nanoparticle delivery system to deliver short interfering RNA (siRNA) that blocked the activity of Twist-related protein 1 (TWIST1), which prevented growth and spread of tumors in a mouse model.

TWIST1, also known as class A basic helix-loop-helix protein 38 (bHLHa38), is a basic helix-loop-helix transcription factor that in humans is encoded by the TWIST1 gene. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer stem cell-like behavior, survival, and invasiveness.

Investigators at the University of California, Los Angeles (USA) used polyethyleneimine-coated mesoporous silica nanoparticles (containing pores with diameters between 2 and 50 nanometers)) to deliver TWIST1 siRNA to mice bearing xenograft tumors. The mice were treated with intravenous injections of the siRNA-nanoparticles weekly for six weeks.

Results published in the June 23, 2015, online edition of the journal Nanomedicine: Nanotechnology, Biology and Medicine revealed that weekly siRNA treatment slowed tumor growth and inhibited not only TWIST1 but also other genes under the control of the epithelial-mesenchymal transition process.

“We were truly surprised by the dramatic effect of delivering TWIST1 siRNA,” said contributing author Dr. Fuyu Tamanoi, professor of microbiology, immunology, and molecular genetics at the University of California, Los Angeles. “This demonstrates the effectiveness of our treatment and encourages us to explore further what is happening to the tumor.”

Related Links:

University of California, Los Angeles


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more