LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Researchers Pinpoint Binding Site for Clostridium difficile Binary Toxin

By LabMedica International staff writers
Posted on 21 Jun 2015
Print article
Image: Bacterial toxins usually exert their full deadly effect in the host cell\'s interior. The toxins overcome the cell membrane by binding to a surface receptor, which conveys them into the cell\'s interior (Photo courtesy of Dr. Panagiotis Papatheodorou, University of Freiburg).
Image: Bacterial toxins usually exert their full deadly effect in the host cell\'s interior. The toxins overcome the cell membrane by binding to a surface receptor, which conveys them into the cell\'s interior (Photo courtesy of Dr. Panagiotis Papatheodorou, University of Freiburg).
A team of molecular microbiologists has located the site where the bacterium Clostridium difficile's binary toxin binds to intestinal cells' LSR (lipolysis-stimulated lipoprotein receptor) protein and triggers a mechanism that results in the invasion of the host cells by the bacteria.

Clostridium difficile is a serious intestinal pathogen that can cause severe diarrhea and life-threatening intestinal infections especially after long-term treatment with antibiotics. The bacteria produce the binary, actin ADP-ribosylating toxin CDT (Clostridium difficile transferase). While CDT can lead to death of the host cells through collapse of the actin cytoskeleton, low doses of CDT result in the formation of microtubule-based protrusions on the cell surface that increase the adherence and colonization of C. difficile.

Investigators at the University of Freiburg (Germany) examined how CDT binds to its host cell LSR. They reported in the April 16, 2015, online edition of the Journal of Biological Chemistry that CDT interacted with the extracellular, Ig-like domain of LSR with an affinity in the nanomolar range. They identified LSR splice variants in the colon carcinoma cell line HCT116 and disrupted the LSR gene in these cells by applying CRISPR-Cas9 technology.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location.

LSR segments created by the CRISPR/Cas technique were expressed ectopically in cells lacking the LSR gene. Results of these experiments showed that intracellular parts of LSR were not essential for plasma membrane targeting of the receptor and cellular uptake of CDT. Furthermore, by generating a series of N- and C-terminal truncations of the binding component of CDT (CDTb), they found that amino acids 757 to 866 of CDTb were sufficient for binding to LSR.

"In the future, it should be possible to block these areas in the toxin and receptor in order to prevent the toxin from entering the host cell," said senior author Dr. Panagiotis Papatheodorou, professor of biology at the University of Freiburg.

Related Links:

University of Freiburg


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more