LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Prevention of ERK Nuclear Translocation Blocks Cancer Proliferation in Animal Models

By LabMedica International staff writers
Posted on 15 Apr 2015
Print article
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).
A team of cell biologists has shown that the cancer promoting effects of ERK dysregulation can be blocked by low molecular weight drugs that prevent translocation of this kinase from the cells' cytoplasm into the nucleus.

ERK1 (insulin-stimulated MAP2 kinase) and ERK2 (mitogen-activated protein kinase 2 or MAP kinase 2) act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation, and development. The activation of this kinase requires its phosphorylation by upstream kinases. Upon activation, this kinase is transported to the nucleus of the stimulated cells, where it phosphorylates nuclear targets. Dysregulation of this pathway has been implicated in some 85% of all cancer types.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) explored a novel approach to cancer therapy based on prevention of the nuclear translocation of ERK1/2, which was expected to inhibit proliferation, without affecting cytoplasm-induced cellular processes. To this end they developed a myristoylated phosphomimetic peptide, which blocked the interaction of the importin7 transport protein and ERK1/2, and consequently the nuclear translocation of the latter.

Results published in the March 30, 2015, online edition of the journal Nature Communications revealed that in culture, the peptide induced apoptosis of melanoma cells, inhibited the viability of other cancer cells, but had no effect on non-transformed, immortalized cells. Furthermore, it inhibited the viability of PLX4032 and U0126 drug resistant melanoma cells. In xenograft models, the peptide inhibited several cancers, and acted much better than PLX4032 in preventing melanoma recurrence.

"In some of the cancers, the molecule worked even better in the animal models than it did in culture. The cancers disappeared within days and did not return," said senior author Dr. Rony Seger, professor of biological regulation at the Weizmann Institute of Science. "In addition, the fact that the molecules do not destroy the ERK but only stop it from entering the nucleus may be good news for healthy cells. Every pathway is associated with a different disease. The trick is to find the molecules that can selectively target just one stage in the process."

Related Links:

Weizmann Institute of Science 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more