We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Photoacoustic Microscopy Enables Rapid Imaging of the Brain's Oxygen Metabolism

By LabMedica International staff writers
Posted on 12 Apr 2015
Print article
Image: Fast functional photoacoustic microscopy of the mouse brain. Figure (d) shows a representative x-y projected brain vasculature image through an intact skull. Figure (e) shows a representative enhanced x-z projected brain vasculature image. Figure (f) shows photoacoustic microscopy of oxygen saturation of hemoglobin in the mouse brain, acquired by using the single-wavelength pulse-width-based method with two lasers (Photo courtesy of Washington University).
Image: Fast functional photoacoustic microscopy of the mouse brain. Figure (d) shows a representative x-y projected brain vasculature image through an intact skull. Figure (e) shows a representative enhanced x-z projected brain vasculature image. Figure (f) shows photoacoustic microscopy of oxygen saturation of hemoglobin in the mouse brain, acquired by using the single-wavelength pulse-width-based method with two lasers (Photo courtesy of Washington University).
Photoacoustic microscopy (PAM) is a novel imaging technique that was exploited by researchers to view the vascular morphology, blood oxygenation, blood flow, and oxygen metabolism in both resting and stimulated states in the mouse brain.

In PAM, non-ionizing laser pulses are delivered into biological tissues. Some of the delivered energy is absorbed and converted into heat, leading to transient thermoelastic expansion and wideband ultrasonic emission. The generated ultrasonic waves are detected by ultrasonic transducers and then analyzed to produce images. Optical absorption is closely associated with physiological properties, such as hemoglobin concentration and oxygen saturation. As a result, the magnitude of the ultrasonic emission (photoacoustic signal), which is proportional to the local energy deposition, reveals physiologically specific optical absorption contrast. Two-dimensional or three-dimensional images of the targeted areas can then be formed.

Investigators at Washington University (St. Louis, MO, USA) recently described using a single-wavelength pulse-width-based PAM method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution in the mouse brain.

They reported in the March 30, 2015, online edition of the journal Nature Methods that this technology enabled them to take images of blood oxygenation 50 times faster than in previous studies using fast-scanning PAM; 100 times faster than an acoustic-resolution system; and more than 500 times faster than phosphorescence-lifetime-based two-photon microscopy (TPM).

“Using this new single-wavelength, pulse-width-based method, PAM is capable of high-speed imaging of the oxygen saturation of hemoglobin,” said senior author Dr. Lihong Wang, professor of biomedical engineering at Washington University. “In addition, we were able to map the mouse brain oxygenation vessel by vessel using this method. PAM is exquisitely sensitive to hemoglobin in the blood and to its color change due to oxygen binding. Without injecting any exogenous contrast agent, PAM allows us to quantify vessel by vessel all of the vital parameters about hemoglobin and to even compute the metabolic rate of oxygen. Given the importance of oxygen metabolism in basic biology and diseases such as diabetes and cancer, PAM is expected to find broad applications.”

Related Links:

Washington University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more