LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Interactive Molecular Interaction Map Now Available Via Free Internet Access

By LabMedica International staff writers
Posted on 09 Mar 2015
Print article
Image: Example of a disease map provided by the new dSysMap system biology tool (Photo courtesy of the Institute for Research in Biomedicine, Barcelona).
Image: Example of a disease map provided by the new dSysMap system biology tool (Photo courtesy of the Institute for Research in Biomedicine, Barcelona).
Spanish genomic researchers have opened a site on the Internet that allows access to the latest updates that have been made to a molecular map that details the effects of mutations on protein interactions and their relation to disease development.

The dSysMap (mapping of human disease-related mutations at the systemic level) was developed by investigators at the Institute for Research in Biomedicine (Barcelona, Spain). This analytical tool displays human disease-related mutations on the structural interactome. Mapping of mutations on protein structures and on interaction interfaces allows visualization of the region of the interactome that they affect and helps in rationalizing their mechanism of action.

An interactome is the whole set of molecular interactions in a particular cell. The term specifically refers to physical interactions among molecules but can also mean indirect interactions among genes. Mathematically, interactomes are generally displayed as graphs. Genes interact in the sense that they affect each other's function. For instance, a mutation may be harmless, but when it is combined with another mutation, the combination may turn out to be lethal. Genes that are connected in such a way form genetic interaction networks. Some of the goals of these networks are: develop a functional map of a cell's processes, drug target identification, and to predict the function of uncharacterized genes.

The interactome graph created by the investigators at the Institute for Research in Biomedicine, which was published in the February 26, 2015, online edition of the journal Nature Methods, includes more than 23,000 documented genetic mutations that affect the function of some 2,000 proteins. The Barcelona dSysMap can be accessed online free of charge (please see Related Links below), and researchers from around the world can add to it in an anonymous manner.

"We place the mutations in a global context of biological processes, which we refer to as systems biology or network biology; by doing this, we provide a more complete view of the effects of known pathological mutations," said Dr. Patrick Aloy, leader of the structural bioinformatics and network biology group at the Institute for Research in Biomedicine. "The dSysMap is a hypothesis-generating system, which, in addition, provides mechanistic details at the molecular level in order to better understand complex diseases of genetic origin—which account for most diseases—such as cancer, Alzheimer's, and diabetes. The different groups can now add the genetic mutations that they discover in the tumors to this computational tool in order to gain a more global view of their effects on the biological processes involved and to formulate new hypotheses."

Related Links:

Institute for Research in Biomedicine
dSysMap


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more