LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Essential Processes of Life in the Genome Imaged

By LabMedica International staff writers
Posted on 11 Nov 2014
Print article
Image: Cells with damage in their DNA (green) assemble abnormally stable microtubule structures (purple to white). This new link between microtubule control and the response to DNA damage, originally discovered in yeast, can be observed also in human cells (shown) (Photo courtesy of L. Wagstaff, E. Piddini).
Image: Cells with damage in their DNA (green) assemble abnormally stable microtubule structures (purple to white). This new link between microtubule control and the response to DNA damage, originally discovered in yeast, can be observed also in human cells (shown) (Photo courtesy of L. Wagstaff, E. Piddini).
A new study has allowed researchers to glimpse into never-before-seen regions of the genome and better determine for the first time the role played by more than 250 genes key to cell growth and development.

The team of researchers, led by Dr. Rafael Carazo Salas from the department of genetics at the University of Cambridge (UK) combined high-resolution, three-dimensional (3-D) confocal microscopy and computer-automated analysis of the images to survey the fission yeast genome with respect to three major cellular processes simultaneously: cell shape, microtubule organization and cell cycle progression.

Of the 262 genes whose functions the team report in a study published October 27, 2014, in the journal Developmental Cell, two-thirds are linked to these processes for the first time and a third are implicated in multiple processes. “More than 10 years since the publication of the human genome, the so-called ‘Book of Life,’ we still have no direct evidence of the function played by half the genes across all species whose genomes have been sequenced,” explained Dr. Carazo Salas. “We have no ‘catalogue’ of genes involved in cellular processes and their functions, yet these processes are fundamental to life. Understanding them better could eventually open up new avenues of research for medicines which target these processes, such as chemotherapy drugs.”

Using a multidisciplinary approach that took the scientists over four years to develop, the researchers were able to manipulate a single gene at a time in the fission yeast genome and see simultaneously how this affected the three cellular processes. Fission yeast is used as a model organism as it is a unicellular organism—in other words, it consists of just one cell—whereas most organisms are multicellular, yet many of its most fundamental genes carry out the same function in humans, for example in cell development.

The technique enabled the researchers not only to identify the functions of hundreds of genes across the genome, but also, for the first time, to systematically ask how the processes might be linked. For example, they found in the yeast—and significantly, confirmed in human cell studies—an unknown association between control of microtubule stability and the machinery that repairs damage to DNA. Many conventional cancer therapies target microtubular stability or DNA damage, and while there is evidence in the scientific literature that agents targeting both processes might interact, the reason why is still undetermined.

“Both the technique and the data it produces are likely to be a very valuable resource to the scientific community in the future,” added Dr. Carazo Salas. “It allows us to shine a light into the black box of the genome and learn exciting new information about the basic building blocks of life and the complex ways in which they interact.”

Related Links:

University of Cambridge


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more