We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Loss of Endothelial Cell Enzyme Restores Sensitivity to Chemotherapy and Radiation in Nearby Tumor Cells

By LabMedica International staff writers
Posted on 04 Aug 2014
Print article
Cancer researchers have found that an enzyme produced by cells in the blood vessels that serve tumors triggers the release of signaling molecules that stimulate the repair of damage to the tumor cells caused by treatment with radiation or chemotherapeutic agents.

Investigators at Queen Mary University (London, United Kingdom) examined the role of the enzyme focal adhesion kinase (FAK) in noncancerous endothelial cells in regions of tumor growth.

FAK is a 125-kDa protein that is known to participate in focal adhesion dynamics between cells with a role in motility and cell survival. FAK is a highly conserved, nonreceptor tyrosine kinase originally identified as a substrate for the oncogene protein, tyrosine kinase v-src. This cytoplasmic kinase has been implicated in diverse cellular roles including cell locomotion, mitogen response, and cell survival. FAK is typically located at structures known as focal adhesions, which are multiprotein structures that link the extracellular matrix (ECM) to the cytoplasmic cytoskeleton. It has been shown that when FAK was blocked, breast cancer cells became less metastatic due to decreased mobility.

In the current study, the investigators blocked FAK activity in the cells lining blood vessels in a mouse tumor model. They found that deletion of FAK in endothelial cells had no apparent effect on blood vessel function but induced increased apoptosis and decreased proliferation of tumor cells in doxorubicin- and radiotherapy-treated mice. Mechanistically, they demonstrated that endothelial-cell FAK was required for DNA-damage-induced NF-kappaB activation in vivo and in vitro and for the production of cytokines from endothelial cells. Loss of endothelial-cell FAK reduced DNA-damage-induced cytokine production, thus enhancing chemosensitization of tumor cells to DNA-damaging therapies in vitro and in vivo.

Additional data published in the July 27, 2014, online edition of the journal Nature revealed that that low blood vessel FAK expression was associated with complete remission in human lymphoma.

First author Dr. Bernardo Tavora, a postdoctoral associate at Queen Mary University, said, "This work shows that sensitivity to cancer treatment is related to our own body mistakenly trying to shield the cancer from cell-killing effects caused by radiotherapy and chemotherapy. Although taking out FAK from blood vessels will not destroy the cancer by itself, it can remove the barrier cancer uses to protect itself from treatment."

Related Links:

Queen Mary University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: The QIAstat-Dx Respiratory Panel Plus has received U.S. FDA clearance (Photo courtesy of QIAGEN)

New Respiratory Syndromic Testing Panel Provides Fast and Accurate Results

Respiratory tract infections are a major reason for emergency department visits and hospitalizations. According to the CDC, the U.S. sees up to 41 million influenza cases annually, resulting in several... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more