We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Bacterial Populations Rapidly Evolve a Time-linked Tolerance to Antibiotics

By LabMedica International staff writers
Posted on 14 Jul 2014
Print article
A team of molecular microbiologists has found that some types of bacteria develop tolerance towards antibiotic treatment by "learning" how to time the length of exposure to the drug and evolving an extended period of dormancy that protects the organisms from the effects of the antibiotic.

Investigators at the Hebrew University of Jerusalem (Israel) followed the evolution of bacterial populations under intermittent exposure to the high concentrations of antibiotics used in the clinic and characterized the evolved strains in terms of both resistance (growth of microorganisms in the constant presence of an antibiotic, provided that the concentration of the antibiotic is not too high) and tolerance (survival of microorganisms during antibiotic treatment, even at high antibiotic concentrations, as long as the duration of the treatment is limited).

Initially bacterial populations were treated with antibiotics for three hours each day. Exposure times were later increased to five and eight hours per day.

By monitoring the phenotypic changes at the population and single-cell levels, the investigators found that after only 10 days the first adaptive change to antibiotic stress became apparent. This was the development of tolerance towards the antibiotic through a major adjustment in the single-cell lag-time distribution, without a change in resistance. They also found that the lag time of bacteria before regrowth was optimized to match the duration of the antibiotic-exposure interval. All bacterial strains adapted by specific genetic mutations, which became fixed in the evolved populations.

The investigators also reported that whole genome sequencing of the evolved strains and restoration of the wild-type alleles allowed the identification of target genes involved in this antibiotic-driven phenotype, which they called "tolerance by lag" (tbl).

The results of this study, which was published in the June 25, 2014, online edition of the journal Nature, demonstrated that bacteria can evolve within days. The investigators expect that better understanding of lag-time evolution as a key determinant of the survival of bacterial populations under high antibiotic concentrations will lead to new approaches to preventing the evolution of antibiotic resistance.

Related Links:

Hebrew University of Jerusalem


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more