LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Loss of Ron Signaling Linked to Development of Inflammatory Bowel Disease

By LabMedica International staff writers
Posted on 14 May 2014
Print article
Image: Micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Image: Micrograph showing inflammation of the large bowel in a case of inflammatory bowel disease (Photo courtesy of Wikimedia Commons).
Cancer researchers have found that decreased molecular signaling by the Ron receptor tyrosine kinase (macrophage-stimulating protein receptor) is linked to the development of inflammatory bowel disease (IBD), a group of chronic inflammatory disorders of the intestine that result in painful and debilitating complications.

The Ron receptor tyrosine kinase, a member of the MET proto-oncogene family, is a pathogenic factor implicated in tumor malignancy. Specifically, aberrations in Ron signaling result in increased cancer cell growth, survival, invasion, angiogenesis, and drug resistance. Biochemical events such as ligand binding, receptor overexpression, generation of structure-defected variants, and point mutations in the kinase domain contribute to Ron signaling activation.

Investigators at the University of Cincinnati (Ohio, USA) have now found that decreased Ron signaling is linked to the development of IBD. This data was obtained from experiments conducted with a line of mice that had been genetically engineered to lack the tyrosine kinase signaling domain of Ron (TK-/- mice). These animals and wild-type controls were utilized as a well-characterized model of chronic colitis induced by cyclic exposure to dextran sulfate sodium.

Results reported in the April 17, 2014, online edition of the American Journal of Physiology-Gastrointestinal and Liver Physiology revealed that TK-/- mice were more susceptible to injury as judged by increased mortality compared to control mice and developed more severe colitis. In addition, loss of Ron led to significantly reduced body weights and more aggressive clinical histopathologies. Ron loss also resulted in a dramatic reduction in colonic epithelial cell proliferation and increased proinflammatory cytokine production, which was associated with alterations in important signaling pathways known to regulate IBD.

"Genome-wide linkage studies have identified the Ron receptor tyrosine kinase and its hepatocyte growth factor-like protein (HGFL) as genes highly associated with IBD,” said senior author Dr. Susan Waltz, professor in of cancer biology at the University of Cincinnati. "However, only scant information exists on the role of Ron or HGFL in IBD. Based on the linkage of Ron to IBD, we examined the biological role of Ron in colitis.”

"We found that genetic loss of Ron led to aggressive inflammation and damage to the colon of models with IBD,” said Dr. Waltz. "In addition, there are a number of small changes called single nucleotide polymorphisms (SNP) in humans which map to both the Ron and HGFL gene and have been identified to strongly associate IBD disease in humans. Our studies suggest that these SNPs may reduce the function of Ron and HGFL leading to chronic intestinal inflammation and damage. With the knowledge that we have gained in studying these proteins in cancer biology, we hope this information may be translated to help patients with Crohn’s disease and ulcerative colitis. Further studies on the Ron signaling pathway are needed and could reveal an important new target for these conditions."

Related Links:

University of Cincinnati


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more