LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Targeted Nanoparticles Deliver Oral Insulin in Mouse Model

By LabMedica International staff writers
Posted on 12 Dec 2013
Print article
A paper described the preparation of a novel class of nanoparticles capable of crossing the intestinal barrier and delivering clinically relevant amounts of drugs such as insulin.

Adoption of nanoparticle therapeutic agents has been slow, partly due to the necessity for delivering these drugs by injection. Oral administration of nanoparticles is preferred but it has remained a challenge, since transport across the intestinal epithelium is limited.

Investigators at Harvard Medical School (Boston, MA, USA) and the Massachusetts Institute of Technology (Cambridge, USA) created a novel class of nanoparticles coated with antibodies specific for the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers.

Their results presented in the November 27, 2013, online edition of the journal Science Translational Medicine showed that these nanoparticles were efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7% per hour compared with only 1.2% per hour for nontargeted nanoparticles.

Targeted nanoparticles containing insulin, as model nanoparticle-based therapy for diabetes, were orally administered at a clinically relevant insulin dose and it elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in mice that had been genetically engineered to lack the FcRn gene, indicating that the enhanced nanoparticle transport was specifically due to FcRn.

"The novelty of actively being able to transport targeted nanoparticles across cell barriers can potentially open up a whole new set of opportunities in nanomedicine," said senior author Dr. Omid Farokhzad, professor of nanomedicine and biomaterials at Harvard Medical School. "The body has receptors that are involved in shuttling proteins across barriers, as is the case in the placenta between the mother and fetus, or in the intestine, or between the blood and the brain. By hitching a ride from these transporters, the nanoparticles can enter various impermeable tissues. If you can penetrate the mucosa in the intestine, maybe next you can penetrate the mucosa in the lungs, maybe the blood-brain barrier, maybe the placental barrier."

Related Links:

Harvard Medical School
Massachusetts Institute of Technology


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more