LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Drugs Block Synthesis of Metabolites by Nutrient-Challenged Bacteria

By LabMedica International staff writers
Posted on 24 Oct 2013
Print article
Researchers have developed a new generation of antibiotics that kill bacteria by preventing them from making critical metabolites such as vitamins and amino acids.

Characterizing new drugs has been hindered by the difficulties inherent in identifying the mechanism of action (MOA) of biologically active molecules. To attack this problem, investigators at McMaster University (Hamilton, ON, Canada) developed a metabolite suppression approach to explore the MOA of antibacterial compounds under conditions of nutrient restriction.

They assembled an array of metabolites that could be screened for suppressors of inhibitory molecules. Further, they identified inhibitors of Escherichia coli growth under nutrient limitation and charted their interactions with the metabolite array. This strategy led to the discovery and characterization of three new antibacterial compounds, MAC168425 (3-(dimethylamino)-1-(4-methoxyphenyl)propan-1-one), MAC173979 (3,3-dichloro-1-(3-nitrophenyl)prop-2-en-1-one), and MAC13772 (2-(2-nitrophenylthio)acetohydrazide). MAC168425 was found to interfere with glycine metabolism, MAC173979 was a time-dependent inhibitor of p-aminobenzoic acid biosynthesis, and MAC13772 inhibited biotin biosynthesis. These findings were published in the October 13, 2013, online edition of the journal Nature Chemical Biology.

"We have developed technology to find new antibiotics using laboratory conditions that mimic those of infection in the human body," said senior author Dr. Eric Brown, professor of biochemistry and biomedical sciences at McMaster University.

"We are taking fresh aim at bacterial vitamin and amino acid production and finding completely novel antibacterial compounds," said Dr. Brown. "We threw away chemicals that blocked growth in conventional nutrient-rich conditions and focused instead on those that were only active in nutrient-poor conditions. The approach belies conventional thinking in antibiotic research and development, where researchers typically look for chemicals that block growth in the laboratory under nutrient-rich conditions, where vitamins and amino acids are plentiful, but in the human body these substances are in surprisingly short supply and the bacteria are forced to make these and other building blocks from scratch."

Related Links:

McMaster University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more