We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genome-Wide Analysis Pinpoints Cancer Cell Genes Linked to Metastasis and Chemotherapy Susceptibility

By LabMedica International staff writers
Posted on 02 May 2013
Print article
Cancer researchers used genome-wide analyses to investigate the link between gene expression and anticancer compound sensitivity and cancer cell invasion.

Investigators at Academia Sinica (Taipei, Taiwan, Republic of China) and the National Taiwan University College of Medicine (Taipei, Republic of China) utilized the [US] National Cancer Institute's (Bethesda, MD, USA) panel of 60 tumor cell lines to gain insights on the genetic mechanism of drug sensitivity and on the contributing molecular factors to invasion heterogeneity. The NCI-60 human tumor cell line anticancer drug screen was developed in the late 1980s as an in vitro drug-discovery tool intended to supplant the use of transplantable animal tumors in anticancer drug screening. This screening model was rapidly recognized as a rich source of information about the mechanisms of growth inhibition and tumor-cell kill.

In the current study, the investigators identified invasion-associated (IA) genes by correlating their invasion profiling data with the Affymetrix gene expression data on NCI-60. They then employed the recently released chemosensitivity data of 99 anticancer drugs of known mechanism to investigate the gene-drug correlation, focusing on the IA genes. Afterwards, they collected data from four independent drug-testing experiments to validate the findings on compound response prediction. Finally, they obtained published clinical and molecular data from two recent adjuvant chemotherapy cohorts, one on lung cancer and one on breast cancer, to test the performance of their gene signature for patient outcome prediction.

Results published in the April 16, 2013, online edition of the journal BMC Medicine identified 633 IA genes from the invasion-gene expression correlation study. For each of the 99 drugs, the investigators obtained a subset of IA genes whose expression levels correlated with drug-sensitivity profiles. They identified a set of eight genes (EGFR, ITGA3, MYLK, RAI14, AHNAK, GLS, IL32, and NNMT) showing significant gene-drug correlation with paclitaxel, docetaxel, erlotinib, everolimus, and dasatinib. This eight-gene signature for chemosensitivity prediction was validated by a total of 107 independent drug tests on 78 tumor cell lines, most of which were outside of the NCI-60 panel.

The eight-gene signature predicted relapse-free survival for the lung and breast cancer patients and featured the cancer hallmark epidermal growth factor receptor (EGFR) and genes involved in cell adhesion, migration, invasion, tumor growth, and progression.

Senior author Dr. Ker-Chau Li, professor of statistical science at Academia Sinica, said, "Our study found eight genes which were involved in invasion, and the relative activation of these genes correlated to chemotherapy outcome, including the receptor for growth factor EGF. We also found that some invasion genes had unique patterns of expression that reflect the differential cell responses to each of the chemotherapy agents - five drugs (paclitaxel, docetaxel, erlotinib, everolimus, and dasatinib) had the greatest effect."

Contributing author Dr. Pan-Chyr Yang, professor of medicine at National Taiwan University, said, "The discovery of prognostic biomarkers for chemotherapy patients remains critical toward improving the efficacy of cancer treatment. The eight-gene signature obtained here may help choice of treatment as part of individualized cancer therapy and our method of gene discovery may be applicable in studying other cancers."

Related Links:

Academia Sinica
National Taiwan University College of Medicine
National Cancer Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more