LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Antifreeze Proteins Block Growth of Ice Crystals by Binding Irreversibly

By LabMedica International staff writers
Posted on 28 Feb 2013
Print article
Antifreeze proteins (AFPs) bind irreversibly to ice crystals and prevent their growth even when no more protein is left in solution.

AFPs create a difference between the melting point and freezing point known as thermal hysteresis. The addition of AFPs at the interface between solid ice and liquid water inhibits the thermodynamically favored growth of the ice crystal, while ice growth is kinetically inhibited by the AFPs covering the water-accessible surfaces of the ice. Thermal hysteresis is easily measured in the lab with an instrument called a nanoliter osmometer.

Many organisms are protected from freezing by AFPs, which bind to ice, modify its morphology, and prevent its further growth. Since the initial discovery of AFPs in fish, they have also been found in insects, plants, bacteria, and fungi. These proteins have a wide range of applications in cryomedicine, cryopreservation, and frost protection for transgenic plants and vegetables. AFPs also serve as a model for understanding biomineralization, the processes by which proteins help form bones, teeth, and shells. Nonetheless, the mechanism of action of different types of antifreeze proteins is incompletely understood. Antifreeze proteins evolved independently many times with diverse structures and properties, even in closely related species. Although AFPs were discovered more than 30 years ago and have been studied extensively since then, it is not clear whether all AFPs block ice growth through a unified mechanism of action or if these diverse proteins have distinct binding properties. As measurements of the antifreeze proteins in contact with ice were elusive, this question had not been answered.

To elucidate some of these issues investigators at the Hebrew University of Jerusalem (Israel) and Ohio University (Athens, USA) prepared a fluorescently labeled version of the yellow mealworm (Tenebrio molitor) AFP. This protein is a hyperactive AFP with potency to arrest ice growth hundreds of times greater than that of fish or plant AFPs. Use of the labeled protein allowed for direct microscopic observation of protein-ice crystal interaction in a custom-designed, temperature-controlled microfluidic device.

Results published in the January 8, 2013, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) revealed that the binding of hyperactive Tenebrio molitor AFP to ice crystals was practically irreversible, and that surface-bound AFPs were sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings ruled out theories of AFP activity relying on the presence of unbound protein molecules.

Related Links:
Hebrew University of Jerusalem
Ohio University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more