We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Newly Developed Compound Protects Heart Cells During and After Infarction

By LabMedica International staff writers
Posted on 18 Feb 2013
Print article
Using two recently developed diverse compounds, scientists have been able to show in animal models that suppressing a specific enzyme protects heart cells and neighboring tissue against the debilitating injury incurred by heart attacks. The compounds also protect against additional damage from restored blood flow after an attack, a process known as reperfusion.

The study, which was led by Dr. Philip LoGrasso, a professor and senior scientific director of discovery biology at the Florida campus of The Scripps Research Institute (TSRI; Jupiter, USA), was published in the February 8, 2013, print edition of the Journal of Biological Chemistry.

A myocardial infarction greatly restricts blood supply, starving heart cells and neighboring tissue of oxygen, which can cause enormous damage in comparatively little time—at times in just a few minutes. This decrease in oxygen, known as an ischemic cascade, results in a sudden crush of metabolic waste that damages cell membranes as well as the mitochondria.

Restoring blood flow adds considerably to the damage, unfortunately, a serious medical issue when it comes to treating major ischemic events such as stroke and heart attack. Reperfusion triggers generation of free radicals and reactive oxygen species that attack and damage cells, intensifying inflammation, signaling white blood cells to attack otherwise salvageable cells and maybe even stimulating potentially lethal cardiac arrhythmias.

The new study revealed that inhibiting the enzyme, c-jun-N-terminal kinase (JNK; pronounced junk), protected against ischemic/reperfusion injury in lab rodents, reducing the total volume of tissue death by as much as 34%. It also substantially decreased levels of reactive oxygen species and mitochondrial dysfunction.

In earlier studies, TSRI scientists discovered that JNK migrates to the mitochondria upon oxidative stress. That migration, combined with JNK activation, they found, is associated with a number of severe health issues, including liver damage, neuronal cell death, stroke, and heart attack. The peptide and small molecule inhibitor (SR3306), developed by Dr. LoGrasso and his colleagues, blocks those harmful effects, thereby reducing programmed cell death four-fold.

“This is the same story,” said Dr. LoGrasso. “These just happen to be heart cells, but we know that oxidative stress kills cells, and JNK inhibition protects against this stress. Blocking the translocation of JNK to the mitochondria is essential for stopping this killing cascade and may be an effective treatment for damage done to heart cells during an ischemic/reperfusion event.”

Moreover, according to Dr. LoGrasso, biomarkers that intensify during a heart attack decrease in the presence of JNK inhibition, a distinct indication that blocking JNK reduces the severity of the infarction.

Related Links:

The Scripps Research Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A massive study has identified new biomarkers for renal cancer subtypes, improving diagnosis and treatment (Photo courtesy of Jessica Johnson)

Novel Biomarkers to Improve Diagnosis of Renal Cell Carcinoma Subtypes

Renal cell carcinomas (RCCs) are notably diverse, encompassing over 20 distinct subtypes and generally categorized into clear cell and non-clear cell types; around 20% of all RCCs fall into the non-clear... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more