We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technology Reduces Drug Development Costs

By LabMedica International staff writers
Posted on 04 Feb 2013
Print article
New technology based on cytochrome P450s (CYPs) proteins will speed up and reduce the cost of the development of new drugs and medicines.

The CYP super-family is a large and diverse group of enzymes that catalyze the oxidation of organic substances. The substrates of CYP enzymes include metabolic intermediates such as lipids and steroidal hormones, as well as xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major enzymes involved in drug metabolism and bioactivation, accounting for about 75% of the total number of different metabolic reactions. The proteins are commercially available for use by companies involved in the discovery of new drugs, but are problematic as they must be transported and stored at temperatures as low as minus 80 degrees Celsius.

Researchers at De Montfort University (DMU; Leicester, United Kingdom) therefore developed a method that allows for CYPs to be shipped and handled at room temperature, eliminating the need for a cold chain, reducing costs, and making CYPs use in testing new drugs much quicker and easier. For the venture, DMU joined forces with life sciences commercialization company Ithaka Life Sciences (Ithaka, Cambridge, United Kingdom) to jointly establish a new company, which will be called CYP Design Limited (CDL, Cambridge, United Kingdom).

“The development of new drugs can be very time-consuming and costly. It can take up to 14 years from the initial idea and cost hundreds of millions of pounds. Thousands of potential new drugs are tested initially for every one successfully brought to market,” said Professor Bob Chaudhuri, PhD, who developed the new technology. “My group's development is designed to provide the proteins that are needed for this work in a cost effective and convenient format.”

“The technology that Professor Chaudhuri has been developing can have a significant impact on the timescales and costs involved in the early stages of drug discovery,” said Bill Primrose, PhD, CEO of CDL. “CYPs are currently transported on dry ice, at around minus 80 degrees Celsius, and are stored as cold as possible in the customer's laboratory until they are needed. His new technology eliminates the need for a cold chain, making it easier to manufacture and ship the proteins, and making them much more convenient for the customer to use.”

CYP-mediated transformations of drug candidates are of crucial importance in the pharmaceutical industry, with multiple roles. Oxidation by CYPs can lead to toxic products, but, on the other hand, local activation of anticancer drugs leads to lethal intracellular toxins at the site of the tumor. The metabolic clearance of most drugs depends on CYPs, and they have been implicated in a large number of drug interactions. Since drug interactions can result in fatalities, drug candidates with CYPs must be taken into account if the expensive and time-consuming development of active compounds with hidden toxic effects is to be avoided.

Related Links:

De Montfort University
Ithaka Life Sciences



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more