We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Differentiated Human Stem Cells Repair Bone Damage in Mouse Model

By LabMedica International staff writers
Posted on 05 Jun 2012
Print article
Human-induced pluripotent stem cells (hiPSCs) derived from skin have been cultured in a novel cell and serum-free growth system and then differentiated into mature bone cells that were used to repair damage to bones in a mouse model.

In 2010, investigators at the University of Michigan (Ann Arbor, USA) described a novel growth system for the culture of hiPSCs. The key to the technique was a synthetic polymer coating, poly[2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium hydroxide] (PMEDSAH), used in conjunction with a cell and serum-free culture medium.

In the current study, which was published in the May 15, 2012, online edition of the journal Stem Cells, the investigators tested the hypothesis that iPSCs could be maintained in an undifferentiated state in this culture system and subsequently be differentiated into mesenchymal stem cells (iPS-MSCs).

They showed that hiPSCs could be cultured on PMEDSAH and then differentiated into functional MSCs, as confirmed by expression of characteristic MSC biomarkers. To demonstrate the potential of iPS-MSCs to regenerate bone in vivo, the newly derived cells were induced to osteoblast differentiation for four days and then transplanted into immunocompromised mice for eight weeks in order to repair five-millimeter holes in the skulls of the mice. MicroCT (an X-ray computed tomography scanner for small animals) and histologic analyses demonstrated de novo bone formation in the holes in the skulls of animals treated with iPS-MSCs but not for the control group.

By the end of the eight weeks, the mice that had received human-derived bone cells had 4.2 times as much new bone as the controls, as well as the beginnings of marrow cavities. Positive staining for human nuclear antigen and human mitochondria monoclonal antibodies confirmed the participation of the transplanted hiPS-MSCs in the regenerated bone.

"We turn back the clock, in a way," said senior author Dr. Paul Krebsbach, professor of dentistry and biomedical engineering at the University of Michigan. "We are taking a specialized adult cell and genetically reprogramming it, so it behaves like a more primitive cell. The concept is not specific to bone. If we truly develop ways to grow these cells without mouse or animal products, eventually other scientists around the world could generate their tissue of interest."

Related Links:
University of Michigan


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more