LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Sunburn Molecule May Provide Insights into Inflammatory Pain Relief

By LabMedica International staff writers
Posted on 21 Jul 2011
Print article
The discovery of why sunburn hurts could lead to new pain relief for inflammatory disorders.

Researchers have found a molecule in the body that controls sensitivity to pain from ultraviolet B (UVB) irradiation, identifying it as a new target for medicines to treat pain caused by other common inflammatory conditions such as arthritis.

Researchers from King’s College London (UK) have discovered a molecule in the body that controls sensitivity to pain from UVB irradiation, identifying it as a new target for medicines to treat pain caused by other common inflammatory conditions such as arthritis. The molecule, called CXCL5, is part of a family of proteins called chemokines, which recruit inflammatory immune cells to the injured tissue, triggering pain and tenderness. This is the first study to reveal this molecule’s role in mediating pain.

The study is planned for publication in the journal Science Translational Medicine.

The research teams, led by Prof. Stephen McMahon and Dr. David Bennett at King’s College London, performed a simple procedure in healthy human volunteers, to expose small patches of their skin to UVB irradiation, creating a small area of sunburn. The treated skin became tender over the following hours, with peak sensory change one to two days later. At this peak, the researchers took small biopsies of the affected skin and analyzed the tissue for hundreds of pain mediators. They found that several of these mediators were overexpressed, so they then examined the biology of these factors in rats to find out whether they were likely to be responsible for driving the pain in the sunburnt skin.

The mediator CXCL5 was considerably overexpressed in the human biopsies and the biology of this chemokine in rats, which suggests it is responsible for a significant amount of sensitivity in the sunburn.

Additional research carried out on the rats revealed that a neutralizing antibody targeting CXCL5 significantly reduced the sensitivity to pain caused by the UVB irradiation.

Prof. Steve McMahon, from the Wolfson Center for Age-Related Diseases at King’s and head of the London Pain Consortium, said, “These findings have shown for the first time the important role of this particular molecule in controlling pain from exposure to UVB irradiation. But this study is not just about sunburn--we hope that we have identified a potential target which can be utilized to understand more about pain in other inflammatory conditions like arthritis and cystitis. I’m excited about where these findings could take us in terms of eventually developing a new type of analgesic for people who suffer from chronic pain.”

The researchers noted that not only are the findings of importance for understanding the etiology of pain, but the approach they used by first identifying the mechanisms in humans and then looking at these in preclinical animal models is a novel one in the field of pain research.
Dr. Bennett, Wellcome clinical scientist at King’s and honorary consultant neurologist at King’s College Hospital, said, “Traditionally scientists have first studied the biology of diseases in animal models to identify mechanisms relevant to creating that state. But this often does not translate into effective treatments in the clinic. What we have done is reverse this traditional method by identifying putative mediators in humans first, and then exploring this further in rats. This enabled us to see that the rats’ response to these pain mediators closely parallel those occurring in humans and identify mechanisms of action in the preclinical studies. We intend to extend this approach to other types of pain and in particular to study patients suffering from chronic pain with the hope that this will speed up the process of turning science into effective treatments for patients.”

Related Links:

King’s College London



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Liquid Ready-To-Use Lp(a) Reagent
Lipoprotein (a) Reagent

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more