LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blocked Membrane Translocators Initiate Cell Death Response

By LabMedica International staff writers
Posted on 04 Sep 2009
Print article
A team of molecular biologists has shown that certain antibiotics that kill bacteria by inhibiting protein transcription also cause the blockage and destruction of translocators, microtubules that transport macromolecules through organelle and cell membranes.

Investigators from Princeton University (NJ, USA) studied the Sec complex of translocators in Escherichia coli. They found that the antibiotics tetracycline and chloramphenicol, which inhibit ribosomal function, generated ribosome-polypeptide particles that became stuck in the translocators and plugged them up. In response, the cell activated the protease FtsH, which digested portions of the translocators and contributed to death of the cells. Increasing the amounts or the stability of the membrane protein YccA, a known inhibitor of FtsH, counteracted this destruction.

The findings from this bacterial system, which were published in the August 7, 2009, issue of the journal Science, may contribute to a better understanding of cancer therapeutics, since YccA is a functional homologue of the protooncogene product Bax inhibitor-1, which may share a similar mechanism of action in regulating apoptosis in mammalian cells.

"If we are to have any hope of outpacing the antibiotic resistance obtained by bacteria, it is paramount that we fully understand the mechanism of action of the antibiotics we currently use,” said first author Johna van Stelten, a graduate researcher in molecular biology at Princeton University. "Unfortunately, this is often very difficult as evidenced by the fact that, 50 years on, we are still learning new things about them. We have determined how YccA works in preventing stress-induced death in bacteria. We hope this new information will shed light on the mechanism of BI-1 in humans.”

Related Links:
Princeton University



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more