LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Fine-Tuning Liver Glucose Metabolism

By Biotechdaily staff writers
Posted on 30 Jun 2006
Print article
Researchers have traced the biochemical mechanism responsible for modulating the uptake, release, and synthesis of glucose by the liver.

Previous findings had shown that hormonal and nutrient regulation of glucose synthesis in the liver was controlled by modulation of the transcriptional coactivator protein PGC-1-alpha. In the current study, investigators at Johns Hopkins University (Baltimore, MD, USA) learned that PGC-1-alpha resides in a multi-protein complex containing the acetyltransferase GCN5. Fine-tuning of glucose metabolism depends on inactivation of PGC-1-alpha by this enzyme and its subsequent sequestering away from the genes it was normally meant to activate.

This mechanism was demonstrated experimentally by using an adenovirus vector to implant the gene for GCN5 into the livers of a group of starved mice. Normally such animals are actively releasing glucose into the blood, but results published in the June 2006 issue of Cell Metabolism showed that glucose release in these genetically engineered animals was significantly reduced.

"These results show that changing GCN5 is sufficient to control the sugar balance in mice,” explained senior author Dr. Pere Puigserver, assistant professor of cell biology at Johns Hopkins University. "Therefore, GCN5 has the potential to be a target for therapeutic drug design in the future. Understanding the ways that energy production and use are controlled is crucial to developing new drugs and therapies.”



Related Links:
Johns Hopkins University
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The AI predictive model identifies the most potent cancer killing immune cells for use in immunotherapies (Photo courtesy of Shutterstock)

AI Predicts Tumor-Killing Cells with High Accuracy

Cellular immunotherapy involves extracting immune cells from a patient's tumor, potentially enhancing their cancer-fighting capabilities through engineering, and then expanding and reintroducing them into the body.... Read more

Microbiology

view channel
Image: The T-SPOT.TB test is now paired with the Auto-Pure 2400 liquid handling platform for accurate TB testing (Photo courtesy of Shutterstock)

Integrated Solution Ushers New Era of Automated Tuberculosis Testing

Tuberculosis (TB) is responsible for 1.3 million deaths every year, positioning it as one of the top killers globally due to a single infectious agent. In 2022, around 10.6 million people were diagnosed... Read more